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Introduction

A topological space gives rise to a graph in a very natural way, let 7 be a
topology on a sel X. Construct a graph < whose vertex-set Is X, and where two
distinct vertices x and v are adjacent if and only if &/ 1 F s ¢ forall U, Ve rsuch
that x ¢ I/, v ¢ V. Equivalently, x and y are non-adjacent if and only if there exist
U, Versochthat x e U, ;e Vbut &N 1 = ¢, We shalt call ¢, and every graph
which can be constructed in this manner, & tepological graph,. We sh also say that
the topology 1 (o1 the topological space (X, 7) induces the graph G, and symb
cally we shall write 7 = G.

Example. Consider the topological space (X, 7), where X = {1,2,3,4,: and
7= (& X 13,120, 11, 2]. [1.4],11,2.4) ]. The inc ed topological gra  is
shown in Fig. 1. 1.
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Fig. 1.1 A topological graph

Obviously, two homeomaorphic topological spaces indoce isomorphic graphs.
However, non-homeomorphic topological spaces may induce isomorphic graphs. For
example, the topology +' = ¢, X, [11, [2], [}, 2], [0, 44, [1.2.4], (1, 2,3 ]
on the same set X in the last example induces the same graph as 7 does although
(X, 7y and (X, 7') are non-homeomorphic.

For convenience, we shall adopt the following notations:

A = the closuse of the subset A of a topological space X.
[x.»] = theedge of a graph with end vertices x and p.
Py = apath» h four vertices. This will also be denoted by

[a, b, ¢. d], where [a, b], {b, ¢], [c, d] are distinct edges.
d{x ¥y= the length of a shortest path in & whose end-vertices are x and

¥. Thus, d; 0, x) =0, dglxr, ¥y = 1 if and only if x and y azmc

adjacent; d,(x. ¥)= == if there is no path joining x and y.
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to any vertex in A U B. It follows that d;(z, x) < I and dz(z, 3) < 1. Now, z can-
not be x or y since d(x, ¥) 2 2. Therefore, d; (2, ;. =dgp(z, »)=1.8ince ye 4
and 2 is adjacent to y, then z ¢ Sg(A). This is a contradiction. Hence, S5(4) n
S;(B) = ¢. This implies that x and y are not adjacent in G".

The preceding theoren does not hold for infinite graphs. Consider a graph
with an infinite number of connected components. If we denote this graph by G,
and if G - 1= G, then it is essy to show that G' is complete, i.e., every pair of
distinct vertices forms an edge in G’. This shows that G’ properly contains .

Combining Theorems 2.2 and 2.3, we get the following:

Theorem 2.4. Let G be a finite graph and G - 7 = . Then G is 2 topological
graph if and only if G = &',

Main Result

For convenience, we shall introduce the notion of a friangulator. If e is an
edge of a graph ¢, then any vertex x in ¢ which is adjacent to both end-vertices of
¢ shall be called traingulator of 2. The set of all triangulators of ¢ in G shall be
denoted by the symbol T;(e), or simply 7(e).

Theorem 3.1. A [inite graph G is a topological graph if and only if for every
subgraph P4 = [x;, X4, X3, x4] such that both end-vertices x; and x4 are not
triangulators of the middle edge = = [x,, x,], there exists a triangulator » of ¢ such
that cach vertex u ¢ ¢ which is adjacent to v is itself a triangulator of e.

Proof: Let & be a finite topological graph and let Py = [xq, x3, x3, x4] bea
subgraph whose end-vertices do not belong to T{¢), where € = [xq4, x3]. Let X
denote the vertex-set of G and A = [x ¢ X dg(x, x,] > 2], B = [x € X:
dg;{x. x3) = 2], Observe that x, e A butx, ¢ 4. It is easy to see that x, € S {4).
Similarly, x5 € §,(8). By Theorem 2.4, x, and x, are adjacent in &', where
G 7 = &' Therefore, since S (4), S;(B) e 7, it follows that Sg{4) NS¢ (B) # ¢.
Let z € S¢{A) N S¢(B). Then z ¢ A U B and z is not adjucent (in G to any vertex
in A U B. 1t follows that d;(z, x,} = dg(z, x,) = 1. Hence. z € T{e). In fact, we
have shown that ¢ # S (4) N S(B) C T(e).

Now suppase that for all ¥ ¢ T{¢), v is adjacent to some vertex u ¢ e U Tle).
Consider again the sets A and B defined earlier. Take any z € S¢;(4) N §¢;(B). Then
z is adjacent to some u ¢ ¢ U T (¢). We can assume, without loss of generality, that
u is not adjacent to x,. Therefore, u € A. This is a contradiction since z is not
adjacent to any vertex in A.

.o prove the converse, let ¢ be a finite graph with the property that for every
subgraph £, = [x,, x,, x,. x4] each of whose end-vertices is not a triangulator of
the middle edge ¢ = [x,, x,]. there exists a triangulator v of ¢ such that every
vertex i that is adjacent to v is in ¢ U Te). Let ¢ > 1+ - &', By Theorem 2.4, we
need to show only that G = G'. By ' corem 2.3 we know that G’ C G. Hence, it
remains to prove that ¢ C &, Let x and ¥ be adjacent vertices in G. We claim that
these vertices are also adjacent in G'. If one end-vertex of the edge :, y] is of
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degree 1 in (v, sav degg(x) = 1, then each Sg(A) € r containing » necess ly
contains x. Thus, [x, ¥] is an edge in G'. So let us assume that deg, ") > 1,
deg;(3) > 1 and consider the following cases:

Case 1. |x, | is not the middle edge of any subgraph P, , both end-vertices
which are not triangulators of [x, ¥].

this case we can assume, without loss of generality, every vertex » # p
which is adjacent to x is a triangulator of [x, »]. L A be a (finite) set of vertices
in Gsuch ti v ¢ 5;(4). We claim that x € S¢;(4). Suppose that x ¢ S;(A). enx
is adjacent to some vertex in A, say u. By assumption,  is a triangulator of |x, v]
and hence u is adjacent to y. This is a contradiction since 3 € S.,(4). Thus,
x € 5¢,(A). It follows that x and y are adjacent in G

Case 2, [x, ¥] is the middle edge of some subgraph Py = [r, x, ¥, 5] such that
bo 1+ idsare not trianguiators of [x, »].

By assumption, there exists a triangulator v of {x, y] such that every vertex u
adjacent to v is in ¢ U Tle), where ¢ = [x, y]. Let A, B be (finite) subsets of the
vertex-set of ¢ such that x € S.;(A), y € 5,;(B). We claim that » € Sg(4). Suppose
that ¥ ¢ S;:(A). Then v is adjacent Lo some vertex u € A. The vertex u cannot be
x or y since x § A and v ¢ A. Therefore, 1 ¢ ¥{e) and consequently, it is adjacent to
b 1x: |y This is a contradiction since x is not adjacent to any vertex in A.
Therefore, v € §-(A4). By a similar argument. we can sbow that v e 5,(8) ence,
S (A) N 8e(B) # ¢. It lollows that x and v are adjacent in G

The following Corollaries are inmediate consequences of Theorem 3.1:

Corollary L. A finite graph ¢ with girth g > 4 is not a topological graph.

Prouf: 1 G is 3 finite graph with girth g 2 4, then there exists a cycle xy. x,,
ceo s Xy X i (7 and this cycle has the shortest length. This cycle conta  the
palth Py = x,, x,. x4, x4 and obviously x; and x, cannot be triangulators of the
middle edge x,, x;. Moreover, x,. x5 does not have any triangulator since there are
no cycles in G of length 3. Therefore, G is not a topological graph.

Corol 7 2. Let G be a finite graph. If for every subgraph P, at least one of
the end-vertices is a triangulator of the middle edge, then (¢ is a topological graph.

Corollary 3. A finite and connected bipartitc graph is a topological graph il
and o ifit is a star.

Prooft A bipartite graph does not contain odd cycles. Therefore, no edge of
4 bipartite graph can have a triangulator. Consequently, a finite and connect

rtite graph ' is a topological graph if and only if it does not contain a subgra

P,. Henee, G must be the complete bipartite graph Ky, i.e., a star.

ference

1. Gervacio, S.¥. “Graphs induced by topologicul spaces: (to appear, Matimyas Mate-
matika, Philippines, 1983)





