
Singularity of Graphs in Some 
Special Classes 1 

Severino V . Gervacio 
MSU-IIigan Institute of Technology 
Tibanga, lligan City 

ABSTRACT 

A graph is a pair G == < V(G), E(G) >, where V(G) 
is a nonempty finite set of elements called vertices and 
E(G) is a set of unordered pairs of distinct vertices 
called edges. If v1, V2, .... , Vn are the vertices of 
G, we define the adjacency matrix of G, denoted by 
A(G), to be the nxn (0, 1) -matrix (a1j), where a;; = 1 

if and only if [ v;, VJ} E E(G). The graph G is said to 
be singular if its adjacency matrix is singular, i.e., det 
A (GJ = 0. 

Singular graphs have not vet been characterized 
and the identification of all singular graphs seems to be 
a clifficult problem. However, characterization of singu­
lar graphs in some special classes is possible. Here we 
shall completely characterize the singular graphs 
among the planar grids Pm x Pn, the prisms Cm x Pn and 

the toroidal grids Cm x Cn. 

Introduction 

The path of order n, denoted by Pn, is the graph with n 
vertices 1, 2, ... , n and whose edges are li, i + 1], i = 1, 2, 
3, ... 1 n - 1 . The cycle of order n 1 denoted by Cn, is the graph 
obtained from Pn by adding the edge [ 1, n}. Figure 1 shows the 
path P6 and the cycle C6. 

1 The results contained in this paper are taken from the NRCP-funded 
research project entitled .. A Study of Singular Bi11artite Grarhs." 
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If G = < V(G), E(G} > and H = < V(H). E(H) >are two 
graphs, the cartesian product G x H is the graph with vertex­
set V(G) x V(H), and two vertices (a, b) and (c, d) in G x H are 

adjacent if and only it either (i) [a, b] £ E(G) or (ii) a = c and 

[b, d) ~~ E(H ). Figures 2, 3 and 4 show the planar grid P5 x Ps, 
the prism CGXP4 ~nd the toroidal grid C4 x CG, respective ly. 

In this paper, we shall determine which planar grids, prisms 
and toroidal grids are singular. Some reduction formulas [ 1] are 
available to handle the planar grids. However, we sha ll use a 
uniform procedure in handling all the tl1ree classes. We shall 
first establish one Lemma which will help us do this. The 
following notations are used in the statement and proof of the 
Lemma: 

P(a, b) 

PO 
I POl 
gcd (a, b) 

denotes the !JOint P in the plane with coor-
dinates (a. b). 

is the line segment with endpoints P and Q. 

is the length of the line segment PQ. 
is the greatest common divisor of a and b. 

PRELIM INARY RESULT 

Lemma 1. Let P(a, b) and O(c, d) be any two distinct po ints 
in the plane with integer coordinates. Then the number of po int s 
in PO with integer coordinates (including P and 0) is equal to 1 
1 gcd(c-a, d-b). Furthermore , these points are evenly distri b­
uted over the line segment PO, i.e ., the distance between any 
two such neighboring points is I PO I /gcd(c-a, d-b). 

Proof: It the line segment PO is honzontal or vertica l, the 
Lemma clearly holds. We, therefore, assume that PO is neither 
horizontal nor vertical. Without loss of generality, assume that 
c > a and d > band let g = gcd(c-a, d-b) . Let 0 ~ k S. g and 
x = a + k(c-a) /g, y = h +- k(d-b) /g. It is easy to check that 
R(x , y) IS a point in PO with integer coordinates and t hat the 
distance between two such neighboring points is I POl /g. Since 
these points are g t- 1 in number, it remains for us to show that 
there are no other points in PO with integer coord inates. To 
prove this , let S(u, v) be any point in PO with integer coordi­
nates. Please refer to F1gure 5 . 
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Without loss of generality, assume that S is not the point P. 
Since g = gcd(c-a, d-b), then gcd(m , n) "'" 1, where rn = ( c-a 
)/g and m = (d ·b) /g. By similar triangles, we have (v-b)/(u-a) = 
(d-b) /(c-a) = m/n. It follows that u -a co kn and v-b = km for 
some 0 s k $ g. Consequently, Sis one of the points R(x , y). 

In addition to the above Lemma, we shall use the following 
results on eigenvalues which can be found in [ ]: 

(a) The eigenvalues of A {Prn x Pnl are 

2cos[11 /(m + 1 )]i + 2cos[11/ (n -+ 1 )]j ( 1 '5 i s m and 1 .:::; j < n). 

(b) The eigenvalues of A( Crn x Pn) are 

2cos(211/m)i + 2cosl11/ (n + 1llj (1 ;; i s mand1 .S j < n) . 

(c) The eigenvalues of A(Cm x C n) are 

2cos(211/ m)i + 2cos(211/n)j ( 1 s i ...:;,m and 1 ::; j < n). 

SINGULAR PLANAR GRIDS 

Using (a), we see that Pm x Pn is singular if and only if 
2cos[11/ (m + 1 )]i + 2cos[11/(n + 1 )]j = 0 for some i and j 
satisfying 1 s i s m and 1 S j ::::; n. Using trigonometric identity 
cosO. -1 cosP = 2cos [{a + Pl/2] cos[(a - j)) /2], we see that the 
planar grid is singular if and only if cos 1 /2[(11/m -+ 1 )i t (11/n + 1 )jl 
= 0 for some i and j satisfying 1 s i s_ m and 1 ::;, j ~ n. But 
1 / 2[(1t/m + 1) - (rr/n + 1 )j] lies in the interval (-11/2, 11/2) and 
cosine is never zero here. On the other hand, 1 /21(11/m + 1 )i + 
(1r/ n + 1 )j] is in the interval (0, 11) nnd cosine is zero only at the 
point 11/2 . Hence, 0 is an eigenvalue of A(Pm x Pn) if and only if 
1 / 21 (7t/m + 1 )i + {1t/n + 1 )j] = 7t/2 for sorne i and j satisfying 1 
s; i ~ m and 1 s j ~ n. This necessary and sufficient condition 
easily reduces to the following: 
[(i /m + 1) + (j /n + 1 )] =-= 1 for some i and j satisfying 1 s i s; m 
and 1 ~ j ~ n. Observe that the equation [(i /m + 1) + 
(j/n + 1 )J = 1 represents a straight line in the ij -p lane with i -
and j- intercepts of m + 1 and n + 1, respectively. We see then 
that there exists i and j satisfying 1 s i s m and 1 s j s 
n if and only if there is at least one point in the line segment 
joining the i - and j - intercepts with integer coordinates. By 
Lemma 1 , there is at least one such point if and only if 
gcd(m + 1, n + 1) > 1. We have thus established the follow­
ing: 
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Theorem 1 . The planar grid Pm x Pn is singular if and on ly 
if gcd{m -f 1, n + 1) > 1. 

SINGULAR PRISMS 

Using {b) and the same trigonometric identity applied in the 
proof of Theorem 1 , we see that Cm x Pn is singular if and only 

if cos1 /2[(2n/m}i ± (7t /n + 1 )] = 0 for some i and j satisfy ing 

1 -:; i ~ m and 1 ~ j ~ n. Now, 1/2[(27t/m)i + (7t /n + 1 )] is 
in the interval [0, (3/2)7t) while 1/ 2[(27t/m)i - (7t/n + 1 )] is in t he 

interval (-n/2, n). In both intervals, cosine is 0 only at the point 
rr/2. Hence, Cm x Pn is singular if and only it (i) l(2/m)i + 
(i /n + 1 )jJ = 1 or (ii) [{2/m)i - (1 /n + 1 )j] = 1 tor some i and j 
satisfying 1 s i s m and 1 S j -::; n. The graph of (i) in t he 
ij-plane is a straight line passing through the points P{O, n + 1) 
and O(m, -(n + 1 )). Since PO cuts the i-axis at (m /2, 0), it follow s 
t hat (i) holds for some i and j satisfying 1 S::. i S m and 1 ~ 
j ~ n if and only if there are at least four points in PO w ith 
integer coordinates. By Lemma 1 , this is equivalent to the 
cond it ion gcd(m, 2n + 2) > 2. Similarly, the graph of (ii) in the 
ij-plane is a straight line containing th-<:! points P{O, - (n + 1 )) and 
O{m, n + 1 ). PO also cuts the i-axi s at (m/2, 0) and so {ii ) ho lds 
for some i and j satisfying 1 s i ~ m and 1 ~ j :; n if and only 
if there are at least four points in PO with integer coord inates. 
This condition also yields the equivalent to the condition gcd(m , 
2n + 2) > 2. There fore, w e have established the following: 

Theorem 2 . The prism Crn x Pn is singular if and only if 
gcd(m, 2n + 2) > 2. 

Rem ark . Theorem 2 is equivalent to the following : 

Theorem 2' . The prism Crn x Pn is singular if and only if m 
0 (mod 4) and n is odd. 

SINGULAR TOROIDAL GRIDS 

By means of {c) and the trigonometric identity used in 
Theorems 1 and 2, we obtain the result that Cm x Cn is singular 
if and only if cos[(n/m)i ± (7t /n)j] = 0 for some i and j 
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sat isfying 1 .:::; i ~ rn and 1 > j ~ n. But [ (rr/m) i (rr/ n)j] is 
in the interval (o, 27t l while [(rr/m)i · (7t/m)j] is in the int erval 

(·1t, 7t) . In the first interval , cosine is 0 at 1t/2 and 31t/2 while in 
the second interval, cosine is 0 at -rr/2 and rr/ 2. From these, we 
see that Cm x Cn is singu lar if and only if for sbme i and j 
satisfying 1 s; i ~ m and 1 ~ j <. n, either one of the following 
cond itions hold: 

(i) 2ni + 2rnj 
1 or 3 

mn 

(ii) 2ni - 2mj 
1 or -1 . 

mn 

The numerator of lil is always even while its righthand side 
is odd. Hence, (i) has no solution if m and n are both odd. The 
same conclusion holds for (ii). If one of m, n is even, we may 
assume without loss of generality that m is even. Tak ing i = 
m/ 2 and j = n. we will satisfy (i). Hence, we have proved the 
following: 

Theorem 3 . The toroidal grid Cm x Cn is singular if and only 
if m or n is even . 

Figure 1 . The path P6 and the cycle c6 
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Figure 2 . The planar grid P 5 x P a 

Figure 3 . The prism Cs x P4 

Figure 4. The toroidal grid c4 X cfi 
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Q ( c. d) 

d - b 

u- a 

X 
c- a 

Figure 5. Three collinear points P, 0 and S with integer coordinates 
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