Singularity of Graphs in Some Special Classes ${ }^{1}$

Severino V. Gervacio
MSU-Iligan Institute of Technology
Tibanga, Iligan City

Abstract

A graph is a pair $\boldsymbol{G}=\langle V(G), E(G)\rangle$, where $V(G)$ is a nonempty finite set of elements called vertices and $E(G)$ is a set of unordered pairs of distinct vertices called edges. If $v_{1}, v_{2}, \ldots, v_{n}$ are the vertices of G, we define the adjacency matrix of G, denoted by $A(G)$, to be the $n \times n(0,1)$ - matrix ($a_{i j}$), where $a_{i j}=1$ if and only if [v_{i}, v_{j}] $\in E(G)$. The graph G is said to be singular if its adjacency matrix is singular, i.e., det $A(G)=0$.

Singular graphs have not yet been characterized and the identification of all singular graphs seems to be a difficult problem. However, characterization of singular graphs in some special classes is possible. Here we shall completely characterize the singular graphs among the planar grids $P_{m} \times P_{n}$, the prisms $C_{m} \times P_{n}$ and the toroidal grids $C_{m} \times C_{n}$.

Introduction

The path of order n, denoted by \mathbf{P}_{n}, is the graph with n vertices $1,2, \ldots, n$ and whose edges are $[i, i+1], i=1,2$, $3, \ldots, n-1$. The cycle of order n, denoted by C_{n}, is the graph obtained from \mathbf{P}_{n} by adding the edge $[1, \mathrm{n}]$. Figure 1 shows the path \mathbf{P}_{6} and the cycle C_{6}.

[^0]If $\mathrm{G}=\langle\mathrm{V}(\mathrm{G}), \mathrm{E}(\mathrm{G})>$ and $\mathrm{H}=\langle\mathrm{V}(\mathrm{H}), \mathrm{E}(\mathrm{H})>$ are two graphs, the cartesian product $\mathrm{G} \times \mathrm{H}$ is the graph with vertexset $V(G) \times V(H)$, and two vertices (a, b) and (c, d) in $G \times H$ are adjacent if and only if either (i) $[\mathrm{a}, \mathrm{b}] \varepsilon \mathrm{E}(\mathrm{G})$ or (ii) $\mathrm{a}=\mathrm{c}$ and $[b, d] \varepsilon E(H)$. Figures 2,3 and 4 show the planar grid $\mathbf{P}_{5} \times P_{8}$, the prism $\mathrm{C}_{6} \times \mathrm{P}_{4}$ and the toroidal grid $\mathrm{C}_{4} \times \mathrm{C}_{6}$, respectively.

In this paper, we shall determine which planar grids, prisms and toroidal grids are singular. Some reduction formulas [1] are available to handle the planar grids. However, we shall use a uniform procedure in handling all the three classes. We shall first establish one Lemma which will help us do this. The following notations are used in the statement and proof of the Lemma:

$P(a, b)$	denotes the point P in the plane with coor- \quad dinates (a, b)
$P Q$	is the line segment with endpoints P and Q.
$\|P Q\|$	is the length of the line segment $P Q$.

PRELIMINARY RESULT

Lemma 1. Let $P(a, b)$ and $Q(c, d)$ be any two distinct points in the plane with integer coordinates. Then the number of points in PQ with integer coordinates (including P and Q) is equal to 1 + gcd(c-a, d-b). Furthermore; these points are evenly distributed over the line segment PQ, i.e., the distance between any two such neighboring points is I PQ I $/ \mathrm{gcd}(\mathrm{c}-\mathrm{a}, \mathrm{d}-\mathrm{b})$.

Proof: It the line segment $P Q$ is horizontal or vertical, the Lemma clearly holds. We, therefore, assume that PQ is neither horizontal nor vertical. Without loss of generality, assume that $\mathrm{c}>\mathrm{a}$ and $\mathrm{d}>\mathrm{b}$ and let $\mathrm{g}=\operatorname{gcd}(\mathrm{c}-\mathrm{a}, \mathrm{d}-\mathrm{b})$. Let $0 \leq \mathrm{k} \leq \mathrm{g}$ and $x=a+k(c-a) / g, y=b+k(d-b) / g$. It is easy to check that $R(x, y)$ is a point in PQ with integer coordinates and that the distance between two such neighboring points is I PQI/g. Since these points are $g+1$ in number, it remains for us to show that there are no other points in PQ with integer coordinates. To prove this, let $S(u, v)$ be any point in $P Q$ with integer coordinates. Please refer to Figure 5.

Without loss of generality, assume that S is not the point P. Since $\mathrm{g}=\operatorname{gcd}(\mathrm{c}-\mathrm{a}, \mathrm{d}-\mathrm{b})$, then $\operatorname{gcd}(\mathrm{m}, \mathrm{n})=1$, where $\mathrm{m}=\{\mathrm{c}$-a l / g and $\mathrm{m}=(\mathrm{d}$-b) $/ \mathrm{g}$. By similar triangles, we have $(\mathrm{v}-\mathrm{b}) /(\mathrm{u}-\mathrm{a})=$ $(\mathrm{d}-\mathrm{b}) /(\mathrm{c}-\mathrm{a})=\mathrm{m} / \mathrm{n}$. It follows that $\mathrm{u}-\mathrm{a}=\mathrm{kn}$ and $\mathrm{v}-\mathrm{b}=\mathrm{km}$ for some $0 \leq k \leq g$. Consequently, S is one of the points $R(x, y)$.

In addition to the above Lemma, we shall use the following results on eigenvalues which can be found in []:
(a) The eigenvalues of $A\left(P_{m} \times P_{n}\right)$ are $2 \cos [\pi /(m+1)] i+2 \cos [\pi /(n+1)] j(1 \leq i \leq m$ and $1 \leq j<n)$.
(b) The eigenvalues of $\mathrm{A}\left(\mathrm{C}_{\mathrm{m}} \times \mathrm{P}_{\mathrm{n}}\right)$ are
$2 \cos (2 \pi / m) i+2 \cos i \pi /(n+1) \mathrm{jj} \quad(1 \leq i \leq m a n d 1 \leq j<n)$.
(c) The eigenvalues of $\mathrm{A}\left(\mathrm{C}_{\mathrm{m}} \times \mathrm{C}_{\mathrm{n}}\right)$ are
$2 \cos (2 \pi / m) i+2 \cos (2 \pi / n) j \quad(1 \leq i \leq m$ and $1 \leq j<\pi)$.

SINGULAR PLANAR GRIDS

Using (a), we see that $\mathbf{P}_{\mathrm{m}} \times \mathbf{P}_{\mathrm{n}}$ is singular if and only if $2 \cos [\pi /(m+1)] i+2 \cos [\pi /(n+1)] j=0$ for some i and j satisfying $1 \leq \mathrm{i} \leq \mathrm{m}$ and $1 \leq \mathrm{j} \leq \mathrm{n}$. Using trigonometric identity $\cos \alpha+\cos \beta=2 \cos [(\alpha+\beta) / 2] \cos [(\alpha-\beta) / 2]$, we see that the planar grid is singular if and only if $\cos 1 / 2[(\pi / m+1) \mathrm{i} \pm(\pi / n+1) \mathrm{j}]$ $=0$ for some i and j satisfying $1 \leq \mathrm{i} \leq m$ and $1 \leq \mathrm{j} \leq \mathrm{n}$. But $1 / 2((\pi / m+1)-(\pi / n+1) j]$ lies in the interval $(-\pi / 2, \pi / 2)$ and cosine is never zero here. On the other hand, $1 / 2!(\pi / m+1) i+$ $(\pi / n+1) j]$ is in the interval $(0, \pi)$ and cosine is zero only at the point $\pi / 2$. Hence, 0 is an eigenvalue of $A\left(P_{m} \times P_{n}\right)$ if and only if $1 / 2 \mid(\pi / m+1) i+\langle\pi / n+1) j]=\pi / 2$ for some i and j satisfying 1 $\leq \mathrm{i} \leq \mathrm{m}$ and $1 \leq \mathrm{j} \leq \mathrm{n}$. This necessary and sufficient condition easily reduces to the following:
$[(i / m+1)+(j / n+1)]=1$ for some i and j satisfying $1 \leq i \leq m$ and $1 \leq j \leq n$. Observe that the equation $[(i / m+1)+$ $(j / n+1)]=1$ represents a straight line in the $i j$-plane with i and j - intercepts of $m+1$ and $n+1$, respectively. We see then that there exists i and j satisfying $1 \leq \mathrm{i} \leq \mathrm{m}$ and $1 \leq \mathrm{j} \leq$ n if and only if there is at least one point in the line segment joining the i - and j - intercepts with integer coordinates. By Lemma 1, there is at least one such point if and only if $\operatorname{gcd}(m+1, n+1)>1$. We have thus established the following:

Theorem 1. The planar grid $\mathbf{P}_{\mathrm{m}} \times \mathbf{P}_{\mathrm{n}}$ is singular if and only if $\operatorname{gcd}(m+1, n+1)>1$.

SINGULAR PRISMS

Using (b) and the same trigonometric identity applied in the proof of Theorem 1 , we see that $C_{m} \times P_{n}$ is singular if and only if $\cos 1 / 2[(2 \pi / \mathrm{m}) \mathrm{i} \pm(\pi / n+1)]=0$ for some i and j satisfying $1 \leq i \leq m$ and $1 \leq j \leq n$. Now, $1 / 2[(2 \pi / m) i+(\pi / n+1)]$ is in the interval $[0,(3 / 2) \pi)$ while $1 / 2[(2 \pi / \mathrm{m}) \mathrm{i}-(\pi / n+1)]$ is in the interval $(-\pi / 2, \pi)$. In both intervals, cosine is 0 only at the point $\pi / 2$. Hence, $C_{m} \times P_{n}$ is singular if and only if (i) $[(2 / \mathrm{m}) \mathrm{i}+$ (i/n+1)j]=1 or (ii) $[(2 / m) i-(1 / n+1) j]=1$ for some i and j satisfying $1 \leq i \leq m$ and $1 \leq j \leq n$. The graph of (i) in the ij -piane is a straight line passing through the points $\mathrm{P}(\mathrm{O}, \mathrm{n}+1)$ and $Q(m,-(n+1))$. Since $P Q$ cuts the i-axis at $(m / 2, O)$, it follows that (i) holds for some i and j satisfying $1 \leq i \leq m$ and $1 \leq$ $\mathrm{j} \leq \mathrm{n}$ if and only if there are at least four points in PQ with integer coordinates. By Lemma 1, this is equivalent to the condition $\operatorname{gcd}(m, 2 n+2)>2$. Similarly, the graph of (ii) in the ij-plane is a straight line containing the points $P(0,-(n+1))$ and $\mathrm{Q}(\mathrm{m}, \mathrm{n}+1)$. PQ also cuts the i -axis at $(\mathrm{m} / 2,0)$ and so $\langle\mathrm{ii}\rangle$ holds for some i and j satisfying $1 \leq i \leq m$ and $1 \leq j \leq n$ if and only if there are at least four points in PQ with integer coordinates. This condition also yields the equivalent to the condition $\mathrm{gcd} / \mathrm{m}$, $2 \pi+21>2$. Therefore, we have established the following:

Theorem 2. The prism $\mathrm{C}_{\mathrm{m}} \times \mathrm{P}_{\mathrm{n}}$ is singular if and only if $\operatorname{gcd}(m, 2 n+2)>2$.

Remark. Theorem 2 is equivalent to the following:

Theorem 2'. The prism $\mathrm{C}_{\mathrm{m}} \times \mathrm{P}_{\mathrm{n}}$ is singular if and only if m $=O(\bmod 4)$ and n is odd.

SINGULAR TOROIDAL GRIDS

By means of (c) and the trigonometric identity used in Theorems 1 and 2 , we obtain the result that $C_{m} \times C_{n}$ is singular if and only if $\cos [(\pi / \mathrm{m}) i \pm(\pi / n) j]=0$ for some i and j
satisfying $1 \leq i \leq m$ and $1 \leq j \leq n$. But $[(\pi / m) i+(\pi / n) j]$ is in the interval $(0,2 \pi)$ while $[(\pi / \mathrm{m}) \mathrm{i}-(\pi / \mathrm{m}) \mathrm{j}]$ is in the interval $(-\pi, \pi)$. In the first interval, cosine is 0 at $\pi / 2$ and $3 \pi / 2$ while in the second interval, cosine is 0 at $-\pi / 2$ and $\pi / 2$. From these, we see that $\mathrm{C}_{\mathrm{m}} \times \mathrm{C}_{\mathrm{n}}$ is singular if and only if for some i and j satisfying $1 \leq \mathrm{i} \leq \mathrm{m}$ and $1 \leq \mathrm{j} \leq \mathrm{n}$, either one of the following conditions hold:
(i) $\frac{2 n i+2 m j}{m n}=1$ or 3
(ii) $2 n i-2 m j$
$m n$
The numerator of (i) is always even while its righthand side is odd. Hence, (i) has no solution if m and n are both odd. The same conclusion holds for (ii). If one of m, n is even, we may assume without loss of generality that m is even. Taking $\mathrm{i}=$ $m / 2$ and $j=n$, we will satisfy (i). Hence, we have proved the following:

Theorem 3. The toroidal grid $\mathrm{C}_{\mathrm{m}} \times \mathrm{C}_{n}$ is singular if and only if m or n is even.

P_{6}

C_{6}

Figure 1. The path P_{6} and the cycle C_{6}

Figure 2. The planar grid $\mathrm{P}_{5} \times \mathrm{P}_{8}$

Figure 3. The prism $\mathrm{C}_{6} \times \mathrm{P}_{4}$

Figure 4. The toroidal grid $\mathrm{C}_{4} \times \mathrm{C}_{6}$

Figure 5. Three collinear points P, Q and S with integer coordinates

REFERENCES

Gervacio, S. V. A Study of Singular Bipartite Graphs. A research project funded by the National Research Council of the Philippines.
Cvetcovic, D. M., M. Doob, H. Sachs. Spectra of Graphs. Academic Press, New York, San Francisco, London.

[^0]: 1 The results contained in this paper are taken from the NRCP-funded research project entitled "A Study of Singular Bipartite Graphs."

