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ABSTRACT 

This pap<~r introduces the concept of the rnxn sign matrix (or Z-matrix \ 

Z ~ (l,ij). ov<:r the number ~et F = ( + J, -· I}. where Zij = ;t I (or simply + or -} for 
every i::l, ... , m am! for every j = l , ... , n (m. n ~ny two positive i oteg~r.<). 1l1e Hadamard 
matnx is a spe.cial kind of ran Z- matriX whose rows are mutually <)rrlw)'onal. Giwn 

any two mxu Z-matriccs Za " <tzal~l a nd Zo = (fzbl ij)· we J,•fin~ ih~ir star product, 
Za * 7-'b, to be the matrix Zc = ([zc.:J ij), whcr~ [zcJij = (zalij • [zblij for all i= l. ... , m, 
j=l , ...• nand· is ordinary multiplicatJoo of real numbers. l!nder 1his matrix operation, 
I<:, th ~ sel Z(m~n) of all th<! 2mxn possible rnxn s ign matrh:~s form an ahclian 
f'·.~roup of order z rm.n i~omorphic to the Klein group of th~ ~illnl.' orJc r. 7r malrico>s 
~an be used to construct a famil y of divi sion algebras of order 2r (r any positi\·c 
integer) over the re~ l numbers as well as 'pedal groups ('uch :ts the gn•up nf lliruc 
operators in (jUan!Um electrodynamics) and p8~uo.logroup.< with imp\>rl<llll appli<.::J · 

lions in pure mathematics and theoretical physic.~. 

Introduction 

The positive(+) and negative (-)signs feature in a wide variety of dispa­
rate disciplines such as mat11ematics, philosophy, science, anJ art. They are 
ubiquitous as symbols of bipolarities as mundane as lik ;wd death, Jove and 
hale, debit and crcdil, and as esoteric as thesis and antithesis. matter and anti­
matter, Yin <Uld Yang, etc. The~e two symbols represent primitive cntilies without 
which matJlem;uics as we know it today will not exist. In fact, tbe simplest non­
trivial mathematical system consists uf just these lwo entities; it is isomorphic 
to the smallest group. 

ln this paper, some of tbe interesting and important properties of these 
prin1iti vc entities will be deduced by introducing the concept of tbc .~ign matrix 
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(or Z-nuurix) . This is a special land of matrix who~c entries an.: the si~n sym­
hols + nnd - representing. the numbcr1i + l anJ -I. We :->hall prove that these 
I.-matrices fonn groups or order 2f ·: r ally poo;;iltvc intl.!gcrl wlticll have the 
abstract :-.Lructurc of the Klei11 gruup (dcmeutary p-groupl of onkr 2r Morco­
Vt:r, we shall also shnw that Z-mntriccs can he usc<.li.O construct division algebras 
of order zr over the real numhcrs as wdl as spL~cia.l pscudt1grnups and gmups 
(such as tllc group of l)irar operators in quantum electrodynamic:-- <Uld t.hc 
group of rotations in six Jimcn:;ions) wi!lt imporwnt applil:ations in pun· math­
cmat.ics and theoretical physics. 

§ -2 Tht Sign Matrix Z 

Let us define a special maLrix which we :-hall call the sign n!clfri.r or 
Z-maLrix all of whose t:ntrics an: clcmt:llts nf the num~r set F = { ~ I, -I } or 
silllpiy (+. -1 . 

DEHNITIOI\ I. !\ .1ign matrix isan mxn matrix Z ~ ('!. ij ) , wtwrc 
zij =+lor -I (or ~imply+ or-), hlr c~vcry i=l, . ... nand for every 
.i= 1, . .. ,!1. 

The simplest kind of ~ign matrix is U1e I x l with only one sign symhl'f as an 
entry. The I xn Z-rnatrix is cal kd a rm1: Lhc mx I or coltmrn /.-matrix is Llw 
transpose of the 1 xn or rmv. t\ny nnn Z-matrix -:an he fDnned ea!-- ll y out of m 
I xn Z-matriccs; IJ1esc I xn mat.rice~ ronn U1c m row!-. l)f th-: resulting 111 xn 
:f.-matrix . Jn particular. an nxn or W/llcJre 7.-matri x can he f'llfllH:d out uJ n I XII 

Z-matricc~. 

T1 IEOREM I. (Lei Z = U;i) he an mxn sign matrix. where i= 1 .. . .. 111 

and j:::l. . . .. n. Then \.here are exactl y N(mxn) = 2'mn ro~sihle lllXTI 

-.;ign matri.ces allnf wiHch arc di ~tinct. 

PIH>OF. Wt~ shall prove this tllcon.:m hy forming any ).!Jven mxn :f.-matrix out nf 
111 lxn Z-matrice~. 1-'irst. we determine the total number N( lxn) llf all possihlc 
Lxn Z-matriccs Z = il.ul· \V here i=l and j= l, ... ,n. Sine!.!'·,; =+ or -. This 
prohlcm is equivalent to determining the mnnhcr of linc:tr arrangemL·.n t~ \lr n 
sign symhols of at most two kind~. + ami -, rakcn n at a time. where then· ure r 
of U1c kind - and (n-rl llf the kind +. such tlJal r ::o 0, 1.2 .. ... n. Tllis L·an be 
shown tu he: 

11 n' 
N( lxn}.:: I, ---- = '11Xn 

r--=o r! tn-r)! 

Since the mxn Z-matrix is ronned out of m lxn Z-matricc s. then for each nf the 
2n distinct Jxn / .-matrices dwsen for tb~.: first row, there are exaL:t ly 2° r hmces 
for the second row. or a total of 211x211 = 22 xn dislinct 2xn Z-matrices; 
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211 x211x20 
·:.= thu distinct 5xu Z-matrkcs; ... , etc. Thercron-, it ti:)IJows that tlJCre 

arc cxact.ly a lotal of 

pus.siblc mxn Z-matriccs all of which m·c distinct Q.E.D. 

II follows easily from Eq. (I) tbat if m = n = I, Lhen we have exactly 
N( l x 11::: 2 1 ~ 1 = 2 lx l Z-awtrices: Z+ =(+)and Z_ = ( - l. In general. if m = n, 
tltcre are exactly N(nxn ) = 2""" square or nxn Z-matrices. 

I .ct us illustrate t.hc application of Theoreml by some examples. Thus. let 
us fonn all of tJtc N{ l x2) = 21x2 = 4 possible lx2 Z-malrices of U1c set Z( lx2). 
Since there are only n = 2 entries in each 1 x2 Z-nwlrix. tltcn t.he only possible 
li nc:u· arnmgerncnls or tbt: signs + anrJ - are tJ1c following: 

Z(lx2): [++I. l+ -], l- +]. [- -] 

These four lx2 Z-matrkcs are all distinct and there are no otller I x2 Z-matrices 
thau these. Using Lhcse four l x2 Z-matrices, we can now f1)rm all of the N{2x 2) 
= 21x2 = I() possihle 2x2 Z-matriccs. 

Z(2x2): + + + + + + + + + - + - + - + -
+ + + - + - + + + - - + 

- + - + - + - + 
+ + + - - + + + + - - + 

Again. tJ1ese 16 s4uarc or 2x:2 Z-matrices are all rJistinct; there arc no other 2x2 
/. -matrices than these. In illc same way. we can form all of the N0x3) = 512 
possible 3x3 Z-matriccs out of t.he N(l x3) = 8 possible lx3 Z-matrices, ... , etc. 

§ 3 - The Star Product of 'hm Matrices 

For sign matrices to be useful, we must introduce a rule of composition for 
them. Altbough Z-matriccs can be subjected to the stand:ml matrix operations of 
addibon, multiplication by a scalar, and ordinary matrix multiplication, not 
mw.:h of interest or import~mce can be gained from them by this means. Stand­
ard matrix theory evolved from tbe algebra of linear tnlllsfonuarions and mosr 
of tlle common matrix operations have been defined to reflect the properties of 
such tr~msformations. If we are to deal with maU1cmatical concepts ot11er than 
linear transformations, it becomes necessary to introduce other kinds of matrix 
operation which, among olher U1ings, will have useful applications in such fields 
as group theory and rclatetl matters as well as in theoretical physics and other 
branches of applied mathematics. In particular, we seek for an operation * 
which can combine Z-matrices in a fruitful way. 
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DEFINITION 2. Let A = ('\j) • and B = (bi.) be any two mxn 
matrices over a field F. The star product, A * ~. of A and B is the 
mxn matrix C =~cij), where 

cij::; au • b ij 

for every i= 1, ... ,m and for every j= 1, ... ,n, and tJ1e operation • i~ 
multiplication in F. 

The operation * shall be called star multiplication to dis tinguish it from ordi-· 
nary matrix muhiplication. 

It is c lear from Definition 2 that the star product can he applied to any two 
matrices o f the same dimensions mxn wi th entries from any gi vcn field nr set F 
with a well defined operation, ·, o f multiplica tion . Thus, tf Za::; (!Zali;} and Zb 
= ([zblij) are any two mxn Z-matriccs over t11c number set r: = f+l, .:.. 1 }, then 
the star product. Za * Zb, of Za and Zb is the mxn Z-matrix Z = (i 1 . .1- ), where 

• C l · IJ 

fzclij = [?) ij' [?.bjij 

for every i= l , . . . ,m and for every j=i, . . .. . ,n. Since the elemenL~ of U1e se t F 
are U1e numbers +1 atld -I. then t11ey sati~fy the foll owing com position rule: 

(+l)· (+l ) = (- 1) · (- 1} =+ I 
(+1). (-1) = ( -1). (+1) = _, 

This rule shows that the numher se t l" = t + 1, -I) is dosed under U1c operation • 
of multiplication; they form a group <F; ·> bomorphic to U1c cyclk group C 2 o f 
order 2. In this system, +I is the identi ty element ofF and i~ thus or orde r l. On 
the otJ1er hand, the element -1 is of order 2. Because of tJ1is composition rule, it 
is easy to sec t11at the ~tar produc t uf any [·,vo mxn Z-matrices is a lways :u1 mxn 
Z-nuu·ix. This indicates that the operation ~ is a c losed binary npcration over 
certain se ts of Z-matriccs. 

§ 4- Sign 1\'lalrix Groups 

We shaH now prove that the Z-matri~:es satisfy the postulates or a grnup 
unJer the opcratiou * l>f star multip lication given hy l )crinitinn 2.1. 

THEOR.Hvt 2. The set Z(mxn) of all mxn /.-matrices and the opera­
tion * of star multiplicat ion fonn a commutative group <Z ; *> nr 
order 2mxn 

PROOF. Let Z = Z(m xn ) be the ~et of all the 2111x11 possible and d ist inct mxn Z­
matrices. lt fo llows trivially from IJef. 2. 1 that tJ1c star product of any two mxn 
Z -matrices is also an nu n Z-matrix. Since Z(mxn) w nt.ai ns a ll possible mxn Z­
matrices, t.hcn opcratiou * is closed over Z<mxn). We assert that the system 
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<Z; *> is a commutative group of order 2111,;:'1, where m and n arc ;my two 
positive integers. To prove this, it is sufficient to show that (a) the mxn Z­
matriccs satisfy the associative postulate under *, (b) there is a unique mxn 
Z-matrix Z 1 wit11 the properties of a unique identity element under *, (c) every 
mxn Z -matrix Zu bas a unique inverse z- ~, in Z(mxn), and (d) the system <Z;*> 
is commutative. 

(a) Let Za = ([zali)• Zb = (Jzb]ij), and Zc = (fzc]U) be any three 
mxn Z-matrices. Using Def. 2.1, form the triple products: Za *<Zb *Zc) = Z~, 
(Z11 *7-'b)*Zc = Zy, where Zx == ([zx lij), Zy = U zy]ij), and 

[z,.lij = [za]ij ' ( fzb]ij' lzclij ), [zy]ij = <lza]\i ' lzbJi)' [zcl!j 

Since <F: ·> is a group and the entries of any mxn Z-matrix arc U1c numbers 
+ 1,-1 E F, then they always satisfy U1c associative postulate under multiplica­
tio n, ·, in F. This implies that: Za *{Zb *Zc) = <Za *ZJ*Zc for all Za. Zb, and Zc in 
U1e set Z(mxn). Therefore, IJlc system {Z;*} is associative. 

(b) Let Z 1 = (lz1]ij). where fz1]ij = +l for every i::l, ... ,m and for 
every j:::l, . . . , n, and + l is the identity element of F. Then for any mxn Z-matrix 
Zu in Z(mxn), it follows from Def. 2.1 that: Z 1 * Zu = Zu * Z 1 = Z11 . Clearly. Z1 
is unique since any other Z.1 wit.l.J the same properties can he shown to be such 
Z1 = Z 1. Therefore Z 1 is a unique identity element under*. We shaH also call Z 1 
tile m xn unit Z-matri.x. 

(c) Let Z3 = ([z3 ]ij) be any mxn Z-matrix and le t z-~ = ([z,:Jij) be some 
mxn Z-matrix such that z- ~ * Za = Z,/Z-~ = Z 1. For this equation to be 1n1e, 
we must always have: 

f Z~hi ' f zaJi.i = [z'aJij • (z~]ij = + 1 

for every j::; 1 . .. . , m and for every j;:; I, .. . , n. Since lz~]ij = ± 1 and [zajij = ± 1, 
men by t11c composition rule of <F; ·> this equation can be true 11' and only if 
[z~.lij = (za]i. for a ll values of i a11d j. This implies that z-~ = Za which means 
Ulat every Z -matrix za is self-inverse, Ulal is, za *Za = zl fur aH za in Z(mxn) . 
Moreover, it is also clear lbat Za can not have any o ther inverse tlum itself so 
l11at z· ~~ b unique. This result is also obvious from the fact that every dement 
ofF js sc.lf-inverse. 

(d ) Let Za = ( fz)ij) and Zb = ([l,t>]ij be any two mx.n Z-matrices. Form the 
star products: Za * Zh ;;o ZF;, Zb * Za = Zy, where Zx = {Lz~ J iJ), Zy = ([zy]ij' 

[zh]ij = [zalij • lzblij and [zyl ij = [zb]ij • [zal ij 

Since (za]ii and lzh]ij are the numbers +1,-1 E F, Uleutlley satisfy the commuta­
tive postulate_ under mu~tiplication, • , in F Tbus, .lza]ij • [zb]il.,=. [z~]ij • . [zalij i s 
always true tor every •= l, .. .. m and for every J=l , .. . ,n. '.Ibis 1mphes that 
Za * 711 = Zb * Za for all mxn Z-matrices Z~ and Zh. Therefore, <Z: *> is 
comm utative. Q.E.D. 
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The above arguments, (a) to fd) , all follow· from Def. 2.1 and the fact thai 
<F; ·> is a group; every hasic group property of <Z:*> is derived from < F; •> . 
Thus, * i~ associative and commutative be~ause ·bas ilicse properties, etc. 

THEOREM 3. Every Z-matrix group <Z; *> of order 2r .is isomor­
phic to tlJe Klein gruup <K,; O> of the same order. where r is any 
positive integer. 

PROOF. [n Tlu.:orem 2 we proved that the set Z(mxn) of all mxo Z-matrices 
forms a commutative group <Z; *> of order 2una under star mulliplicahon *. 
This group is such that every Z

11 
E Z, except tbe identity clement Z i . is of order 

2. Each of U1ese order 2 elements generates a subgroup of order 2 whi1..:h is 
isomorphic to the cyclic 2-group <C2; O>. Now, let z,. and zh he rwo distinct 
elements of order 2 of Z and let <A; *> and <B; *> he the subgroups of order 2 
generated by Za and Zb, respectively. Then A 'I H o.: {Z1 } . Fonu the set 

AB = {ZxiZx :::: Zil*Zb, Z. EA. Z1l E B} 
. ~ ll -

where Zll is any element of A and 712 is any t~lement of B. lt can h.e easily shown 
that AB has exaclly 2x2-: • 4 dist.in<.:l elemeni.s and t.hut the sy~t.em <AB; *> is a 
group of order 4 which is isomorphic to the direct product. AXR,. of A and B. 
Similarly, let Zc be an clement of order 2 from the suhset Z- AB of Z al!d let 
<C; *> be the subgroup of order 2 generated by z.;. 'fhen it is clear that i'\ n () c 
= {Z 1}. Again, form t11e set 

ABC= {Z)Zy = 7.!:\*Zll., *Z£, Za E: A, Zll ED. Zc. E C} . 

f'hen we can again sbow that <ABC; *>is a group of order 2x.2x2 = 8 which is 
isomorphic lO the direc t product AX.BXC. By extending t11e s:une argument to 
the remaining elements of order 2 in the subset Z-ABC, etc., we finally ex haust 
all of the elements of Z and ohtain the set ABC ... R: 

Anc R- (Z 1z - ·z "' *L. z E A z E I, l · · · - ~ .. w w - ~ '' ~ 'r' ~ ·;:, }·\., · · · ' ··r - ' · 

of o rder 2r which contains all of the 2m~n. elernenL~ of Z "" Z(mxu). This simply 
means that 

Z = ABC. . . R (to r subgroups) 

and therefore it. follows t11at. 

Z = A X B X C X . .. X R (to r subgroups). 

Since eacb of the subgroups A.B,C, . .. ,R is a isomorphic to the cyclic group C2 
of order 2 and Z is o f order 21nxn, then it follows that r = nun and that we 
t1nally have: 
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Z =: K, = C2 XC'1XC2X .. . XC2 (to r=rnxn subgroups) 

We shall cal l the elementary p -group <Ks; o> the Klein gro11p of degree r and 
order s= 2r. This g roup is commuta tive amJ all of its clement-; are ),e)f-inwrse. 
This comple tes tbe proof of the theorem. Q.E.U. 

§ 5- Z-Representatiun of Klein c;ruups 

In the foregoing sections, we have shown tha t il is alw<iY~ po~siblc 10 fonn 
a set Zl mxn) of 2 mxn Z-matrices, where m and n are any two positive integers. 
Moreover, we ha ve proved that the system <Z; *> of order 2mxn. is al ways a 
group isomo rphic to the Klein group of the same order. Therefore. we have the 
followin g: 

TIIF.OREM 3. 1. Every Klein group < Ks; o> of order s = 2r (r any 
positive integer) can he represented by a Z-matrix group <7.; *> or 
order 2r and dimensions rnxn, where mxn ~ r. 

PRO< >F. By Theorem ~. every Z-matrix group of order 2r is isomorphic to Lhe 
Klt•in group o f the same order. Therefore, every Klein group o f order s :-.: 2r is 
isomorphic to some Z-mal.rix group of the smne order . For reference, le t us ('all 
the dimensions mxn of the Z-matriccs in Z = (mxn ) the dimensions o r the 
Z-matrix group {Z; *}. To pmvc Ibis theorem, we musl thcrd'ore show thai. 
m xn ~ r. If <K

5
; o> is of order 2r, !be n its Z-malrix representation must he o f the 

~ante order regard less of its dimensions mxn . This means that the ),mallcst 
re presentation of <K

5
; o> is of dimensions mxn such that m xn == r. Thus. if r is a 

prime, tJ1cn we can llave m = I , n = r. o r m = r. n = I; if r is composite witJ1 
prime fac tors r I' rl, . . .. r 1, then 111 and n can he any combinati on of tht:se prime 
factors U1at satisfy the condition mxn = r . Nex t, consider U1e case when mxn > r. 
Arc the re I.-matrix groups of order 2r and of dime nsio ns mxn > r? The order of 
.my Z-matrix group is of the form pk. where p = 2 and k is a positive integer. 
Since 2 is a prime. then tJais group of order 2k has a series of proper subgroups 
ol o rders 2"· 1• 2k· 2, .... 2r, .. . 22.2 1, all of which arc Z-malrix groups. This im­
plies that every Z-matrix group of orde r 2r is isomorphic to a suhgroup of a 
J:-matrix grou p of order 21:. where k > r. Nnw, let this Z-matrix group of order 
2" he nf dimensions mx.11. Thereh1re, any subgroup o f ordt~r 2r of U1is group of 
order 2k is also of dimensions mxn. Tlut k > r and k = m xn; hence mxn ~ r. 
Q.E.D. 

As an illustration, let us find four Z-malrix representations of tJ1c Klein 
group <Ks; o> of order 22 = 4 and dime nsions mxn ~ 2. If m xn = 2, the n we can 
have m = I. n = 2. that is m xn = I x2. And if mxn > 2, the n there are many 
possihi lit.ics: mx n = 2x2, I x4, 4x4, etc. ·nms, l.ct us t:!kc th e se ts Z, /\, ll, and 
C given in Figure I . These sets from Z-matrix gro ups of o rde r 22 = 4, viz . <1.; 
*>,< A; *>, <B; *> and <C; *> aJI of which arc isomorphic to each other aud to 
the Klein group <Ks; o> of tbe same order. 
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The Klein group <K~; o> (or simply K s} is <t very interesting system with a 
simple and beautiful struc ture. Tt is a commutative p-group whose subgroups are 
all Klein groups; K2 is regarded as the basic K~-group_ The most widely known 
Klein group is K4 which is popularl y known as lhe Kfein .four group. This 
group, among other things, is used to describe the symmetries of the rectangle 
as well as certain symmetry classes in U1e rclali vis tic theory or panicl e spin . 
Other Klein groups are involved in division algebras, in Dirac's clcctJoll lbeory, 
and in other fields of pure and applied mathematics. 

Zt = f+ +I 7,2 == l+ - ] 
Al 

+ + 
A2 

+ + 
== = 

+ + + -

Z9 = 1- +l 74 = 1- - I + + 
A4 = + + 

A,, == - + 

Z = (Z( Ix2) /\ = ZL2x2) 

HI::: 1++++1 B2 = [+--+1 c I "' ++++ c 2 - +--+ 
++++ +--+ 
++++ +--+ 
++++ +--+ 

ll~= 1+-+-1 Bo~ 1++--] (\ = +-+- c 
- ~ = ++--

+-+- ++--
+-+- ++--
+-+- ++- -

B ""Z(lx4) C = Z(4x4) 

z. 7"2 z~ z4 
~ 

2 3 4 
, ____ 

zl z. z'2 L~ z4 2 3 4 

z2 z2 zt z 4 z3 2 2 4 3 

z, z3 z4 zl z2 3 3 4 2 

7.4 z4 z3 z 2 z l 4 4 3 2 

<Z; *> <K4; <)> 
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·FIGURE t. Four Z-matrix representations of Ulc Klein group <K4; o> of order 
22 = 4. The Z-matrix groups <Z; *>, <A; *> <B; *>, and <C; "'> arc of 
dimensions I x2, 2x2, I x4, and 4x4, respectively, but they are all of the same 
order 22 = 4. Moreover, they arc all isomorphic to each other and to <K4 ; O> . 

The sets A= Z (2x2), B = Z(lx4), and C = 'l. (4x4) arc subsets of order 4 of the 
Z-matrix sets Z (2x2), Z (lx4), Z(4x4), rcspectivcfy. 

It is interesting to note l.hat the Chinese YIN-YANG anagrams in the l 
Ching (Book c~f Changes - the first book of the Confuse ian Ch1ssics) can be 
represented by Z-matrices. Let the Yang line _ _ and the Yin line - - - be 
represented by+ and -, respectively. Then the four basic bigram configurations 
become: 

fJigrams 

+ 
+ 2x 1 Z-matrices 

Similarly, tile eight rrigrams are : 

trig rams 

+ + + + + 3x 1 Z-matrices 
+ + + + 
+ + + + 
zl 7'2 z~ z4 Zs z6 z7 z '1! 

We see from these tll;H tile anagrams can be formed in exactly the same 
way as lbc mx I Z-matrices, wht:re m is the number of rows of Z. There arc 
therefore exactly N(m.x ]) = 2m anagrams. m=2,3,6. Thus, if m = 6, there are 
exactly 26 "" 64 hexagrams, eight of which (in z ,matrix from) are shown below: 

+ + 

I i 
+ 
+ + 

+ 

Since each set of N(mx 1) "" 2m, m=2,3,6, anagrams can be represented by 
mxJ Z-matrices, then t11ey form groups of order 2m isomorphic to the corre­
sponding Klein groups of the same order. Thus, the set of N(6x 1) = 26 == 64 
hexagrams form a group isomorphic to the Klein group of order 64. This Klein 
group contains subgroups of orders 25 = 32, 24 = 16, 23 = 8, 22 = 4, and 2t = 2. 
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The subgroup~ of orders 4 and 8 are homorphic to the groups of bigrams and 
trigrams. respectively. 

§ () - Division Algebra Ovt!r the Real Numbers 

Let us now consider an important application lJf Z-mat.rices in abstract 
algebra. For this and other applications w~ need to illlroducc an interesting and 
useful matrix called the 0"0 -multiplicatinn nwl rix of a set K,. 

DEFINITION 3. Let <K
5

; o> be a Klein group of orders= 2r. where 
K = {c.li=l s = '>r}. S (K ) ={c .. ) ll'' de· f1nino s· tru•·turc lll ' tlri x s 1 ., • • ·" ~ ~ ' to.. r ~ 1.1 · "" t::. · . w " · 

of < K5 ; o>, where eij = e;oCj for all i,j=l. ... ,s; Zr (K) = (l.ii) a given 
Z-mat.rix, wbcre zij:::: ± l for all i,j= I' . . . ' s. The SXS matrix 

M/K) = Zr(k) *Sr<K) = (m;} 

is called fib -mulliplicalion.nuurix of k,. where 

m .. ==e. 09 c. = z .. • e = z .. • (e·"C·) 
IJ I J IJ !J !J !J 

for all i, .i= l, ... s. 

The ®-mulliplicatjon matrix defined above determine~ the nature of the 
operation ~ over U1c set Ks. Sucb a matrix can be used to construct Jivision 
algebras and special groups aud pscudogroups; start.ing with a Klein group, new 
systems arc fonned by means of Z-matrices. The Klein group is thus 1hc suh­
stratum of such systems. 

Consider the algebra 1"-r = { y, F; +, x, ®, 0.0,.} of order s = 2r over I he llc iJ 
F. Take as the basis of the vector space y LJle set Ks ::: { e, ~ i= I . ... ,s} nf s h1Jsis 
w~ctors over ·whi<.:h tllc hi nary operation ® is defined by tile ~ -mult iplication 

ffi 'lt::rix M (K) = (·m .. ) wh,·re m .. = c. ~ e. for ·•II i J'=- 1 . s Fvef)' vector of 
' f .~ · ' IJ ' • IJ 1 J u ' - ' · · ' · 

tbis algebra Ar can be expre~scd uniquely as a linear ClHHbinalion of the s hasis 
vector::- in Ks. Thus, if a. hE' Ar, t11cn 

s s 

a = .L ai • c, and h = L bi • ei, 
i= I .i== I 

where aj, h.j E F. Vector multiplication is defined by bilinear/\· and U1c matrix 
Mr (K) Ml t.hat Lhe product. a 0 h, of any two vectors a , b E r\ is given hy lhe 
ex pression. 

a ® b = ~ f . z .. • ek .4J IJ IJ • (k= l , ... ,S) Fq. < 1) 
ij=k 

i,j=l, ... ,s, where 1.-ij = a; lj, ekE K
5

, and the sum is to he extended over all patrs 
of indices iJ. for which e- Q9 c . = 1, .. • ek. 

. I J !J . 
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By definition, an algebra Ar over a t1cld F is a divi.>ion algebra if it !las a 
unity e 1 of vector multip.lication and every non-zero vector a E Ar has a unique 
inverse a· 1 E Ar, t11at is. a vector with tile property that a® a· 1 = e

1
. Such a 

vector :r 1 exist in Ar if a vec tor a *, called the conjugate o f a , exists in Ar. with 
the special property that 

a ® b* = I, f ij zi.i • ck 
ij=k 

E4. {1 . 1 ). 

where N(a) > 0, called the norm o f a , JS a n clcmt~ nt of the field F and 

f;i = a -a \ This implies that all the tcm1s of the expression L r .. z .. • ek for 
. I . i.i=k IJ lJ 

which k =1= l a ll wid tlfJ to zero; only tile terms where k = l have a non-zero .\'tuli , 
that is, 

I, rij zi.i • ck = I, fij 1.i1 • t: 1 = N(a) • c 1 Eq. ( !.2) 
U~k U=l 

Therefore. N(a) = __ L r ij Z;j (summed over a ll index pairs ij for w hich c i 0 ej = 
lj=k 

Z;i • e 1 ). Witll such a vector a*E Ar, we find that the inverse a· 1 of a :/= 0 exists 
in '\ and is g iven by 

~t' 1 = a */N(a). Eq. (2) 

The problem of construc ting a d ivision a lgebra over the real numbers is 
thus equi valent to t11c prohlcm of constructing <l ~ -multip lication matrix Mr(Ks) 

su<.:b tl1at the conjugate a* of every vector a* 0 can be definell that satisfies 
th e requirements o f Eq. ( 1.1). Such a matrix can indeed be consU1lcted by 
means of Definition 3 and hy defining the conj ugate of any non-zero vector 

s 

a = La; e; = a 1e 1+a2e2 + .. . + ases to be 
i= l 

Eq . (2_1) 

where a 1 E F and ci E K,. Al l known division a lgehras over tile real num hcrs 
(complex numhers, quaternions, Cayley numbers) satisfy t11c abo ve rcquiremenL~­

Morcover, in lllcsc algebras, the norm of any vector a 1= 0 is a positive real 
n umber given hy the e:r.pression 

N(a) = L a~ 
r.,~ 

Eq. (2.2} 

To construc t U1c required ~-multiplication match Mr (K
5

) == (ntii) for 
a di vision algebra Ar o ver F o t' order s = 2r, we first form the matrices 
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~r(K) = ~zij) and Sr(K) "' (ei; ), "":here :t.ij = ± ~ and cij = e;oej for all i. j= 1 .. .. . s . 
fo do th1s, we note that the bas1s vectors ot the algebras of cumplex numbers 
(r = 1 ), quaternions (r = 2). and Cayley numbers (r = 3), all satisfy the following 
equations: 

e.Obe. == 
t I 

e;®e:i = 
c;6t e1 = 

z .. • (e.oc.) 
IJ I J 

ei~e; 
e 1 ~ej = C; 

(for all i,j= l , .. . ,s) 

(i~ j . j=f:. 1) 

(for all i= l , ... , s) 

where C;, ej E KS' s = 2r, and :t.ij = ±I. This shows that the matrix zr (K) = v.i) 
is such tl1at 

I if i-j =even ( i ~j. i , j~l) 

zij = 
I if i - j = odd or 0 (i~j , i,j:;<:l) 

Eqs. (3. 1} 

zij = -z .. 
Jl 

{ i~j . i , j ,t l ) 

zil = - zli = 'l.ll = +1 ([or all i= l .... ,s) 

To illustrate this, we show in Figure 2 the matrix \ ( K
5

) and a matrix 
Zr ( K) satisfying Eqs. (3. 1) which c.-ut be used to construct a matrix M, (K) = 
Zr (K s) * ·\ ( K,) = (m;.i) satisfying Eqs. (3). Thb matrix Mr (K~) is shown in 
s implified fonn in Figure 3 wht:m.: we have ~et ± = ± 1 and v = c_.. Also. note 
tlutt we have indicated some submat.rit.:cs. of Zr {K s), Sr ( K), and 1\\ (K~ ) . 

It can be shown 0.1at this matrix Mr ( Ks)· where r is any r osilive intege r, 
defines an operation ~ over U1c set K , which can be used a~ Ute basis of an 
algebra Ar o f order s = 2r over t.he field F of rea l numbers. It is easy t.o verify 
Umt if we use Eq . (2.1) to define the conjugate. a*, of any non-zero vector 
a E A , then a has a nonn N(a) "" a2

1 + .. . + a~ as l!,ivcn hy Eq. (2.2) ;md a 
r ~ -

unique inverse a -1 = a"'/N(a) as given by Eq . (2). Thus,·\ is a division algebra 
over F. 

zl ~ ··- ~ J : + I + 
- ; + 

+ + ; 

Zz + + _ _ -_ j + 

+ + 
+ + + 

+ + + 
(a) Zr (Ks) 

+ ... + 
+ . 
+ ... + 

+ . . . + 

st ~ lJ~ ~ J~ ~ 
3 4 l 2 7 

s2 _±_.L 2 1 R 
~ 6 7 8 
6 5 8 7 2 

6 . . . Tl
0 

5 ... n1 
8 . . . n2 

7 . .. 113 

2 . .. 114 

1 . . . 115 
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FIGURE 2. (a) Z/K5) = (zij) is a special sxs Z-matrix. (b) Sr (K) = 
{ei} is the sxs structure matrix of tbe Klein group <K

8
; o> of order 

s = zr; n = 2r-k, k=O,l, . .. , (2r-l); ± = ± 1 and v "" ev. 

A simple examination of the entri.es of the three matriccr; Zr (Ks), Sr (K~), 
and ~ (K) will show !bat they can be partitioned into unique submauices Zp 
Z2 , Zy Z4 • etc.; S1, S2, S3, S4, etc .; Mp M2 , M3, M4, etc.; where Zu, Su, and 
Mu are of dimensions vxv such that v = 2u and u s r. These submatrices 
(i udi(:ated by dotted lines in Figures 2 and 3) are elements of tile foHowing 
ascending series: 

zl < z2 < z3 < z4 .. . < zu < .. . < zr 
S 1 < S2 < S3 < S4 ... < Su< ... < Sr 

M1 < M2 < M3 < M4 • .. < Mu < ... < Mr 

Clearly, each submauix Zu, Su, or Mu of Zr, Sr, or M,, respectively, can be 
treated on i ts own as a Z, S, or M matrix of smaller dimensions. 

I 2y ·r 6 7 8 9 lO 11 12 l3 1~ 15 l6 1 .. n0 
M1 _l__:l 4 -3 6 -5 8 -7 10 -9 12 -ll 14 -13 16 -15 .. -111 

3 A - 1 2 -7 8 -5 6 -11 12 -9 10 -15 16 -13 14 ; . . (12 

M 2 ..£__2__.:1__~- 8 -7 6 -5 12 -J 1 lO -9 16 -15 14 -13 j .. -n3 
5 -6 7 -8 -I 2 -3 4 -13 14 -15 16 -9 10 -11 12 i .. 04 

6 5 -8 7 -2 -1 4 -3 14 -13 16 -15 10 -9 12 -11 , . . -n5 
7 -8 5 -6 3 -4 - 1 2 -15 16 -13 14 -11 12 -9 10 .. 116 

M:~ _ .. ~_ .. 7 -6 5 -4 3 -2 -1 J6 -15 14 -13 12 -11 10 -9 .. -n7 
9 - 10 11 -12 13 -14 15 -16 -1 2 -3 4 -5 6 -7 8 .. n g 

10 9 -12 11 - 14 13 -16 15 -2 -1 4 -3 6 -5 8 -7 . . -n9 
11 -12 9 -10· 15 -16 13 -14 3 -4 -1 2 -7 8 -5 6 .. 1110 

12 11-10 9 -16 15 -14 B A 3 -2 -1 8 -7 6 -5 . . -n,J 
13 -14 15 -16 9 -10 11 -12 5 -6 7 -8 -1 2 . -3 4 . . tl l2 

14 13 -16 15 -10 9 -12 11 -6 5 -8 7 -2 -] 4 -3 1 .. -n13 
15 -16 13 -14 11 -12 9 -10 ·7 -8 5 -6 3 -4 - l J .. 1114 

M4 16 15 -14 13 -12 1 I -10 9 -8 7 -6 5 -4 3 -2 -1 . . -1115 
- ·-·····- ·· ~-- --- ......... . 

FIGURE 3. General form of @-multiplication matrix M, (K) = Zr 
(K5) *Sr (K8) = (mij), wbere n]i = ei ~ ej = zi. • (eioe); nk = 2r-k, k 
= 0,1 , . . . . (2r-l) and v = c\ .. This matrix dcflnes a family of Cayley 
Algebras of degree r! 
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Because the matrix Mr contains all other smaller matrices ~.. where 
u < r, as submatrices, then every algebra Ar also contains as subalgebra.-; all 
oilier smaller algebras Au, u < r, of tllc same type. llws, we also have the 
following ascending series: 

where we have included A
0 

= F for completeness. This shows that all Ar algebras 
defined by the matrix Mr <Ks) llavc a common underlying structure. lf 
r ~ 3, thenAr is non-associative; only A

0 
(real numbers), A 1 (complex numbers), 

and A2 (quatemions) are associative. 
We note, however, thai. Eqs. (3.1) can be satisfied by many other 

Z-matrices and thai Ulc matrix Zr <Ksl shown in Figure 2 is U1ereforc not unique. 
Each matrix Zr (Ks) satisfying Eqs. (3.1) dcterminel'i a 0!0 -multiplication matrix 
Mr (K) satisfying Eqs. {3.) ·nw set of all sudl matrices therefore determines a 
clasl'i of division aLgebras Ar of degree r, wllcre r is any positive integer. The 
members. of the class of algebras A3 of order 8 are alternative algebras known 
as Cayley-Dickson algebras. 

Figure 4 shows the ~-multiplicatjon matrix M~{KR) tl1at defines tJ1c alge­
bra U3 whicb is isomorphic to the algebra of Ca)fey ;wmbers (ordt~r 23=::~). 
M3(Ks) can be seen to contain the submatriccs M2(K,1) and ~1 1 (K2) which 
define the algebras U2, (order 22=4) and U1 (order 21=2), respectively. These 
algebras, in turn, can be shown to be isomorphic to tllc algebras of quatcmions 
and complex numbers, respectively. This shows that the algebra or Cayley 
numbers contains the quatemions and complex numbers as subalgcbras. Any 
tt1gctm.1 Ur, where r .2 3, is non-associative. The only 

l 2 I 3 4 

I 
5 6 7 8 

Ml 2 - I I 4 -3 6 -5 -8 7 
···-----------· 

3 4 .J 2 ' 7 8 -5 -(J 

Mz 4 3 .. ~---~~..1 8 -7 6 -5 
--~-----·--

5 -6 -7 -8 -1 2 3 4 

6 5 -8 7 -2 -1 -4 3 

7 8 5 -6 -3 4 -1 -2 

.~ -7 6 5 -4 -3 2 -1 

FlGURE4. The ®-multiplication matrix M,/K8 l = m;i), \Vhcrc 
m .. = c. ® e. = 7.·· • (e-oe-), which dt::fmes the algebra lJ~ of order IJ I. j IJ I ) · -
29=8. ll) is isomorphic to the algebra of Cayley numbers. 

associative division algebras are U2 (quaternions), U1 (complex numhcrs) and 
U

0 
(F =real numbers); ! J3 (commonly known as Cavley numbers) is Lhc proto-
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type or the class of Cayley-Dickson algebras of order 8 . The algebra A 1 defined 
by the matrix M3 shown in f-igure 3 belongs to this class. . 

§ 7 - Con'itruction of t<)-Systems 

We shall now show how t.he ®-multiplication matrix Mr (K~) can he used 
to {:O!lf.itruct special linitc dosed systems such as groups and pseu<logroups. 

ll i s clear from DeL 3 that the operation ~ defined by Mr (K) is not 
necessarily closed over Ks because o f the sign coefficient Z; i in its defining 
equation: e;®e.i = z;j • (ci''c .). To form a closed system, it becomes necessary to 
define ® over a larger set C (r + 1) of order 2r+ 1 which cont.ains K~ and c lements 
of the form: -e;, • i = I • ... • s = 2r. Therefore, if we take 

then the operation 6C is closed over C(r+l ) such that tJ1e following basic rela­
tions hold: 

C;e<l cj = (- e;) 63 (-ei)= zij •( e1nCj ) 

(-c. ) OQcj = c. 69 (- e i= z .. • (c. ~·e - ) 
I . · I J ~ 11 ' I ) 

- c; = (- I ) · ( C;, where -I E F 

for all i , j= l , ... , -.. Any Hnitc closed system of the type <C; ® > uf order 2t+ 1 

shall he called a 60 -system. Ckarl y. C; OOei = c1 = ±c1 for all i=l .... . s. This 
means that <C ~> contains only clements of orders I. 2, and 4. Hence any 
tinilc closed system which contains only elements o r orders 1, 2. and 4 is 
isomorphic lO some ~-sysrem or the same order. 

The ~-system <C; ®>of order 2r+ 1 c:.u1 be explicitly expressed in te rms of 
U1e matrix M,.(K,) = ( lmr lij ), i, j= L . .. s, as follows. LetS (C) = (±lmrl ;_;) be the 

s~ru\tur\~m~.tlri x_or <C; 61) ~. Pa~tili~n ~ (C~ into four hl ~>c~ s. c:P(J' p, q : J, 2. and 
k t ( 11 - C22 -M, ( K~) and C 12 - C21 - -:\1r{K ,), ""lh.:rc Mr(K)- (-fn\J;j). 
Then we can write : S(C) = (C q) = (±lmrlij). This matri x is shown in 1-'igure ·4. 
To indicate that the matrices 4 and Sr arc the building hlocks of Mr. and llcnce 
o f the ®-system <C; ~>, we shall a.lso symbolically \Vritc: S(C} = Zr CK) 00 Sr 
{K, ). 

S(Cl = 

FIG liRE 4. The structure matrix S(C) of lhe ®-system <C; 60> shown 

in hlock form in l.cnns of Ule matrix Mr <K, l. 
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§ 8 - Other Applications 

As our first example of a ®-system, consider tlle ~-multiplication matrix 
~(Ks) shown in Figure 3 which defines lhe Cayley algebra Ar of order 2r tmd 
degree r. Fonn lhe set C(r+l) = {± c;fi=l •. . . ,s = 2r}. Then <C; ®> is a 
~-system of order 2r+ 1 which we call the system (group or pseudogroup) of 
Cayley unit vecto rs. If r $;. 2, we find that <C; 09> is a group (associative); 
otherwise, if r 2:. 3, it is a pseudogroup (non-associative). 

Nexl, let Mu(K) = ([mu]ij) be a submatrix of rvtr(K), where u < r. v = 2u, 
and lmujij = cr ®cj = zij • (eioej) for all i, j=l , ... ,v. If C(u+l) = 
{±e. I i=l, . .. ,v=2u}, then it follows that <C(u+l); ®>is a ~-system of order 
zu+ I which is a subsystem of < C(r+ l); ~> . Now if u= I, then u+ I. = l + 1 = 2 and 
we obtain t11e ~-system <C(2); 60> of order 22 = 4 which is isomorphic 10 the 
cyclic group C4 of order 4 . Moreover, it is also isomorphil: to t11e cyclic group 
generated by U1e basis vecto rs 1 and i of the algebra of complex numbers. If u = 
2, we obtain the group <C(3)>; ®>. of order 23 = 8 which is isomorphic co the 
quatcmion group of order 8; tl1is is the group generated by tJ1e hasis vectors of 
the algebra of quatemions. And if u = 3, we have the sy~tcm <C(4); ~>of order 
24 = I fi which is isomorphic to U1e pseudo group of onkr I fi generated by the 
basis vectors of the:: algebra of Cayley numbers whicll is a non-associa!lve 
division algebra. 

Finally, let us construct two interesting groups <G; ~> and <( j+; ~+>, 

both of order 24+ 1 = 32. which are isomorphic to tJ1c group of mtmions in six 
dimensions and the group of gamma matrices (or Dirac oper11tors), respectively. 
These groups are involved in sucb diverse fields as geometry, function tlleory, 
and quantum electrodynamics. We shall first construct the group <tl; ~> and 
U1cn use it to form <G+; oo+>. To do this, we begin hy delining a ~-multiplica­

tion matrix Mr {G) = (gxy), where r = 4, s = 24 = ln. and gxy = gx otgy for all 
x, y= I, . . . . s= 16. Since M4 (Q) = Z4 <G.) *S4 <G). it is necessary to first fonn 
tlw Z-matrix Z4(G~) = (zx/ rigure 5 shows the required Z-mau'ix where the 
indices x. y of the entries '' xy are associated witl1 distinct number couples (a, b) = 
4(a-1)+b. where a,b = I ,2,3,4. Thus if a=b= I, then x = (l,!) "" l <lnd if a=b=4, 
t11en x = (4,4) = 16, etc. With this jrvlex notation, the Z-matrices shown in 
Figure 5 can he defined as follows : Z4«:is) = <Zxy), where 

+ + + + + + + + + + + + + + + + 
+ + + + + + + + - - - - - - - -

+ + + + - - - - + + + + - - - -

+ + + + - - - - - - - - + + + + 
..... .......... ............... ... .......... .. 
+ + + + + + + + + + + + + + + + 
+ + + + + + + + 
+ + + + - - - - + + + + - - - -
+ + + + - - - - + + + + 



... ........... . ............... ............... 
+ + + + + + + + + + + + + + + + 
+ + + + + + + + 
+ + + + + + + + 
+ + + + - - - - + + + + 
··············· ··············· ··············· 
+ + + + + + + + + + + + + + + + 
+ + + + + + + + 
+ + + + + + + + 
+ + + + - - - - + + + + 

FI(;UJm 5. ·n1e Z-mau·ix Z4(Qs) = <zxv>• where x = (i. q) = 4{i-l )+q, 
y = ( j,r) = 4(j-l )+r, and i,q,j,r = I •... ,4 

= 
zxy = z <i,q> ~.r> 
X = (i, q ) = 4 {i- 1 )+ lj, 

+ I if4=j orq.j=l 
-I if q;a!j and 4, j ;tl 
y = (j .r) = 40- 1 )+r 
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for all x. y= I. .... S= 16 such lllat i.q,j,r = I, . .. .4. Since S4<~) = (e!.>'), where 
c,Y = cxoey for all x. y= I. ... , 16, then \VC 11nally obtain. M.1 CG.s> = Z4(!.4)*S/Gsl 
= (" ) where '='xy • 

Th is equation complc£Cly defines the o peratio n ~ over the. set ~ = 
{ci I i=l. .. . , s= l6} · See Figure 6. 

Now, fonn tbe set G = {±gi I i= l. ... . 16} . Then operation® defined hy 
M.1<Gs> is closed over G and the system <(3 ; Ob is a Qq-systcm of order 
24+ 1 = 32. This system is a group isomorphic to the group of rututions in six 
dimensions; it is non-commutative and i t contains I dement of order I , 19 of 
order 2, and 12 or order 4 . It is not difficult to show that G can he generated by 
the following set of four clemcnL<;: J = { g4, g), g 11 , g 7 } . T hese c lemel"'tS 
anticommute with each other, tlwt is, g8 ®gh = -gb ~g" for all &a• gh E J . 
Moreover. g~ = g~ = g~ 1 = g1 (order 2) while g~ = -g 1 (order4 ). 

To construct the group <<I~; co+> of order 24+ 1 = 32. we simply fonn 
ano ther ®-mulliplication matrix M4<Gs> = Z~(D~) *S4<.G) by replacing the Z­
matrix Z4<(is) by the Z-matrix Z4ills) shown in Figure 7; the substratum remains 
t11c same, that is S4eti,.) =S4<ti~ ) which is the Klein group of order 24 = 16. To 
w nst.ruct Z4(G-.~) , we modify the set J of independent generators 

FIGURE 6. The ®-multiplication matrix M4<Q) = (gltY). w here gxy = gx ~gy = 
zxy ·(ex oey), for all x. y = 1, ... 16 . (Note: v = gv .) 
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2 3 4 :'i 6 7 X ') lo 

Ml 2 4 " _, 6 5 X 7 -10 -I) 

3 4 1 ~ -7 .g -" -6 J I -14 

M2 4 " _, 2 1 -X -7 -6 -) -12 13 

:) 6 7 X I 2 3 4 13 12 

() :) :>1 7 2 4 1 -14 -11 

7 X 5 6 -:~ -4 - I -2 l:'i -10 

X 7 6 :'i -4 -:I -2 - I - I () l) 

M .~ () to II 12 l3 14 l:'i I() I X . ~ 

16 JS J4 u - 12 - ll -10 . <) 

of (1 hy replacing its order 4 clement. g.1, by another element, !:: \1, wl1ich is or 
order 2. lo form !he new set J+ ={g.~. g5• g11• g+7} and use J+t< J generate the 
group <(j+; 60+> . Again. all ele.mcnls ol J+ anli-cnnunulc with each llther hut 
they are thlw all or UK': same onkr 2. The group <:( ;+; Oi 1 > is isonlllrphic to the 
group of !Jirac OfiNillur.l \ llr gamn~t t mmriasi; it 1s nnn·C\)mmutati vc and cun­

tains 1 c lement or order l, ll of order 2. and 20 of order 4 . The ~et J+ or rour 
anti-commuting dement s sati,.;fy Lhc anti-comuHt.'ation ruh~s Involved in the 

refativisl ic rhcory r1( free dec/runs and r~latcd mailers in (//fillltllm e!ccfrodY­
rwmics. 

[l h. important to remark that auy ~ys tem fgroup, psc udngroup, or algchra) 
defined in term~ of a 09-multiplication matrix nl" the type M,(K) = z, <K) 
*S/K) depends on the Z-matrix Zr(K~i for its bask characteristics that arc not 
determined hy it s substratum S/K) = <Ks; •>>. The lllttlrix Mr!K) d~ fi1H:~ the 
upcration ~ over Ks. Therefor~, tJw syslrm <K,; ~> of order s b 

+ + + + 
+ - + + 
+ + - + 
+ + + + 
.......... ... .. 
+ + + + 
+ + + + 
+ + + + 
+ + + + 

+ + + + 
+ + + + 

+ + + + 
+ - + + 

+ -

+ + + + 

+ + + + 

+ + + + 

+ + + + 

+ + + + 

+ + + + 

+ + + + 

+ + + + 
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+ + + + + + + + - + + + + + + + 
+ + + + + + + + 
+ + + + + + + + 
+ + + + + + + + + 
............... ............. .. .. ..... .. ...... 
+ + + + + + + + + + + + - + + + 
+ + + + + + + + - - - -
+ + + + + + + + 
+ + + + + + + -

FIGURE 7. The Z-matrix Z4<U) + z.~Y) used to con~truct lhe 
~-multiplication matrix M4(G) that defines the group <G+;W >. 
This group is isomorphic to the group or Dirac Operarors (or gamma 
matrices). Note tbat Z4<G~) differs only from Z 4(Gs) in some of its 
diagonal entries. 
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not. in general. dosed except in the special case when Zr<KJ = Zp where Z 1 is 
the sxs unit Z-malrix. The order of mt element of <K~;@> is determined by Ulc 

equation: C; ~e; = c~ = Z;; • e 1. If zii = +l, e; is of order of 2 or I (only c1 is of 
order 1 ), and if Z;; = -1, e; is of order 4. This mcw1s that tJ1c diagonal entries I.;;· 
of Z/K

5
) determine the oumhcr of elements of orders 1, 2. and 4 in { Ks; ~} 

Now, if zij = zji for all i , j = I, ... ,s, then it follows Umt e; ~ej = e;~ej for all C;,ej 
E K

5 
and hence <K

5
;61b is commutativ(~. Otherwise, if th~;re is at least one pair of 

entries zij and z.i i such that z1J =I= ' 'ji• tbcn it follows t!Jat < Ks; ®> is non­
commutative. 

The use of the ~-multiplication matrix in U1c ~.:onstruction of algebras <llld 
~-systems is indeed a fruitful one. This is hccause there is a large numher of 
possible Z-matrices to choose from in forming a desired malrix ~(Ks) of di­
mensions sxs. The required Z-matrix is in U1e sct Z(sxs) which is of order 2sxs 

ancl, if. for instance. s = 22 = 4, then we have a total of 24x4 = 65.536 possibk 
4x4 Z-matrices~ 

As a last remark, we sL:'ltc that the 'JlJ-mult iplicmion milt rix can be general­
ize(! to mean any nxn matrix M(E) = ic;}• where eij = ci@ei, i,j= I, .... n, ~ is 
any binary operation over E, and E"' {c;li=l . ... ,n} is ~m y !-.et of n clements. 
I !ere, the binary operalion ~ need not be dosed over E . In this general ized 
sense, the matrix M

1
(Ks) given by Def. 3 is seen to be just a special form of ®­

mult.lplication matrix. If® is closed, however, M{E) reduces to a simple structure 
matrix. tbat is, M(E) = S(E). 

§ 9- Summary 

The Z-matrix is a special kind of matrix whose entries arc U1e symbols+ 
and - representing tbe numbers + l and -1 . This matrix has interesting and 
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useful properties with important applications in abstract algebra and in modem 
Ulcoretical physics. Z-matrices exist in all dimensions mxn and they form com­
mutative groups of order 2r under Ule operation * of star multiplication. Every 
Z-matri;w. group <Z;*> of order 2r is isomorphic lo a Klein group of Ule same 
order; hence every Klein group of l)rder 2r can be represented by a Z-matrix 
group of the same order and dimension mxn such that mxn >. r. 

Z-matrices can also he used to fonn division algetmH as well as special 
pseudogroups and groups. This is made possible by means of tllc flJ-multipl ica­
tiol! matrix Mr(Ks) = Zr(Ks)*Sr<Ks), where Zr(K) is an sxs Z-matrix and Sr(K~) 
is the sxs structure matrix of the Klein group <Ks;o> of order s = 2r. Ry a 
suitable choice of Zr(K5 ) we can construct a family of division algebras -'\ of 
order 2r (cal led Cay/e)' algebras of degree r) which inclUIJ«:.~ the subalgebras A1, 
A2, and A3 isomorphic to the complex nrunhers. the 'Juaternions. ancl Cayley 
numbers. respectively. MT(Ks} can also be used to cnnstruct the ~-system family 
o f tinitc closed systems of order 2n 1. This famil y includes such important 
systems in theoretical physics as the grnup of rutatinns in six dimensions. the 
group of Dirac operators, and the pseudl>grnup of Ca:'t'ley basis vectors. All 
systems (algebras and Q -systems) <lefmcd hy mcHns of ~-multiplicmion matri­
ces of tbc type M,.<K) have a common substratum: the Klein group of de~ree r. 

Finally, Dr. Rene Felix of the Universi ty of t11c Philippine~ in Diliman has 
pointed out that the Z-matrix is similar to t11e Hadamard Matrix II used in 
coding tlleory and statistics. A short review of the litemturc has shown that 
indeed H is a special form of uxn Z-matrix , where n = I . 2 or a mul tiple of 4 , 
wilh mutually ort11ogonal rows. Thus, if H' is t11e transpose o f H. then JIIJ1 = nl. 
where 1 is t11e nxn unit matrix . Moreover. the star produ,:t of two matrices 
defined in ~ 3 of lhis paper is abo known as tlw Hadamard product. 
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