
Trans. Nat. A cad. Sci . 
Trc/m{•/. /4: 133-144. /!N] 

THE MATHEMATICS OF SINGULARITIES1 

Edgar E. Escultura 
fllsfi tute <~( Mathem~tical Scie1~er. arui Phys1cs 

UPLB, Collegt<, Laguruz 

ABSTRACT 

Set-valued function a~ a s ingular function was u:;c·d in 2. 3. J . 5. 7, X and 9 to 
introduce the generalir.~d integral with applications to differenllal equatinns and quan­
tulll rnechauic.s. A calculu~ l)f ~ct-valned functions wa.~ d,·vclop~<.l in 6 and appplied 
to the wave packet. path integ ration and superconductivity of quantum m~chanics. 

This paper considt•rs mathematical s ing ularities and broa•le us the notio n tc' 
include contradictions. parad<J.,es and mathematical dead ends. 7h eu it focuses on th t'" 
Lebe$gue paradoJC and iadic.ttcs mathematical applic ations to physical singularitic~ 

towards a new theory of g ravitation. 

(The author got hold of a book on superstiing theory wbilt..: Ulc present 
paper was still being encoded. It" was a pleasant surprise to know that the 
mathematic; he had been doing in the last two years, including this pape r, fit.-; 
snugly into the theory. However, rather than upgrade tllis paper with the new 
inf,mnation, he ret<tined it as originally wriUc1r to serve as a chronidc of tht! 
development of new ideas. A settucl, " Some Mathematical and Physical Princi­
pi.es of Superstring Theory" was quickly written and completed even before this 
one.) 

1. Singularities 

In classical mathematics, discontinuities are usually teasers and sources 
of paradoxes. They arc generally avoided but when that is not possihlc. elabo­
rate schemes are used to " tame" or at least make t11em manageable. In th is paper 
essential clisnmtinuitics arc reclassified into three kinds: a jump; infinity, p lus 
or minus; and set-valued . 
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Discontinuities are special cases of singularities that o\:cur in more general 
spaces of functions, especially in differential equations and comp lex analysis. 
Some singularities have been studied mainly to ovcrcom~.: their '' nastiness'' . 
Thus jump discontinuities appear in differential equations, especially in cunnec­
tion with the Laplace transform or the heat e-quation. The second typt~ also 
appears iu the calculus of poles and residues in complex analysis. Some nice 
t.ht~orems about them exist. such as the Casorati-Weierstrass and Picml lhco­
rems about isolated singul.mi ty but tl1cy refer to the neighborhood of a singuhuity. 
Singularities of the second type open up po~sibiliti es fur extending the Laplace 
transfom1 to nonconvergent improper integrals wiU1 the introduction of measure 
distrihutions. That would extend the generalized integral to unhoumlcd oscilla­
tion such as integrals of the type 

rc/2 
[ tanxdx or 

() 

e 
J tanldx 
-e x 

(Sec !61 for discussion o f the genera.lizel1 integral) . 

A st udy can be made on integrals of tbe type J tanxdx hy introducing a 

suitable measure distribution p(·) that would shrink tng intt:grand and results in a 
convergent improper integral. Of course, there arc always trivial dis trihutions 
tlutl can make this particular integral converge, such as r.r

2 
- x or 4,;osx. Thus. 

rc/2 1th 
J tanxcosxdx = 1 and ) - (rrh - x)tanxux l . 

0 0 -

A more interesting distribution for this intt~gral is 

[ 

-a 
' n 

cxp l2 -
where n is an even pu~ilive integer. 

, a> 0, 

As x---). rr1,, this function tends to zero while um x tends to oo so that th~ 

question or convergence o f the integral , 

rr /2 

Jo ex+ n~ taoxdx 
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is not trivial. This iuea has applications iu operations research or in scuing up a 
factory complex where the price of real co,;tate depends on proximity to the 
hi gh w~ty or trading exchange fadiity . 

The integral 
c 

f tan - <.lx 
X 

-f. 

can he the springboard ror studying unbounded ge11eralized osci llation 7 with 
finite measure since the integrand is set-valued at x =- 0, its values being \hi,; set 
ol' real numbers. Then Lbc uppmpriate measure dislrihution wouh.l be tllc gcner­
alizcd <.krivativc of its set- value with respect to this mea::-ure(6). As in 3. a 
JiiTcrent.iaJ e4uation nf the type 

y !;til x 
can a.lso be approximated by a wilt! generalized oscillation w1Ui this measure 
distribution which can he normalized to a probability distribution. 

The third type of discontinuity is not as well studied huL IJwsc working on 
<.: l<.ls'\sical integration try to shrink it to a point to achie;:ve convergence. Of 
course, the resulting shrunk function is somctbing ~Jse. For instance, the topolo-

- 1 -
gist sine curve f(x} = sin11 xis sct·yalucd at x "" 0. Some mathematicians have 

studied the integrability of x2sin11 xwlljch, certainiy, i~ a convergent improper 
Riemann integral since it has removable discontinuity at. x = 0. 

The perspective in this paper, however, is entire! y different. Singularities 
are nei tJJCr avoideJ. nor tampered witlt to make them benign . The full for<.:e of 
th<."ir "nastiness" is welcomed, amJ some mathematical theories are built nut of 
tllern and physics. With this perspective, singularit.ics arc a gold mine of ideas 
o ut of which some useful mathematical rheories GUl be huilt.. 

However, t.lie meaning of singularir.ies is first hroadcncd to extend to 
plCJccs at which das~ical mathematics breaks down. Included in this category 
are lhc essential sing ularities of complex analysis, sct·valued functions, and 
Peano's space. filling curves. Also included are the contradictions. panu..loxcs 
and dead ends of classical mathematics. 

The dead ends are those areas of classical malhematic:;. that cannot ad­
vance further wtbout radical alteration of tl1c basic concepts there or a fundamental 
reformulation ol tbe problems heing addressed by those areas. For example, the 
Lebesgue integntl is just about at t.be zenith of it.s evoluti(J!lary journey. It can 
deal with weil·bcllavcd functions alone, such as those w ith simple discontinuiti~" 
including jumps or measurable and essentially bounded functions, su<.:h as some 
common improper integrals. However, it breaks dmvn when confronted with a 
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functjon that tends towards a set such as sinn l· Thus, this particular pursuit 
X 

reaches a dead end at that point in the long hislorical development or the 
integr~tl . To break up that dead end and open up a new path beyond it. ne w 
concepts had to he introduced and a new theory build that wo uld encompass a ll 
the stages in the development of tlte integra l . In this ca~c tile essential <:onccp L.;; 
needed are lhc genera lized notions or lim it and continuit y. the genc raJ i:t.ed 
integral and derivative and gene ralized osci llation aud pulsation. These notious 
were developed in several re fercnces(3, 4, ), 6, 7, X and 9) which paved lltc way 
for a new theory - Lite calculus of set-valued functions. 

Anothe r dead end that has dissipated a lot o f mathematical ene rgy il; 
Fcmtat' s conjecture: that tl1ere arc no integer!' x, y anti z satisf ying tllc e4uation 
x11 + y" ; 7.0 , wher e n is an integer greater than 2. Here. a new orientation is 
needed to achieve some breakthro ugh: tu study two types of a;domath: systems, 
one tl1at includes this conjecture as an axiom and another that excludes it. Tha t 
wo uld he analogous to the de ve lopment of non-F.uclidean geome try. 

Some dead ends are inadequacies. For cx~unplc. 411antum mc~hanics 11ccds 
special mathematics for probabilis tic motion . lt would invo lve sc i-valued Junc ­
tions (8). Present path integration there is also flaw ed : it do~s not make :'ense 
fo r t.hc mo tion or an d ementary particle . II i:; propm;ed that the IOCIJ1> o f U1c 
expect<ttion poin! he taken in place o f lbat ''patJJ" hut this would rc4uirc a 
calculus o f set-valued functions wir.h appropriate p robability d ist..rihution func­
tio n or ll1e set-values of such function . That b tJtc kind or prognun thai. would 
lead to further breakthroughs in the understanding. of the wave packet. 

An im porta Ill fa llacy whose resolution led to an import:ml bn:aktbrough in 
Analysis is the use of necessary condition without an existence theory. Tbis was 
resolved b y Young (14) in 1937 for the calculus of vwi ations by building up an 
existence theory. In tllc proccess, the theory of generalized curves was devel­
o ped. A gcne rabzed curve is t.bc Sll)Utilm of a differenti a l equation w1th sN-valucd 
deriva tive; and it is shown in 14 tha t it is the ·fine limil of a sequence or 
traditiona l curves. Hnforlun<Hely, this fa lhu.:y still remains unno ticed in many 
parts o r mathematic:> today f or c x.amp k . in dealing w1t.b ti lE' heat c4uatio n of 
partial c:l i rtcrent ial cqu:..:r~on.s. \'OC starts w itll t.be. statement, ·'Le t the S\)lution he 
T(x, y) = g{xl h(y) . . . ·' (separated wuiablc:s). without raising the 4uestion of 
whe ther such ;t nice ~o[utjnn exists in Ll1c first pla<.'e. Gotler!; tncun;plctcncss 
theorem appears 1o be a paradox or, a t Iea-;t, a bit unsettling; it i~ a difficul t 
questio n that may not be re~olvah le in mathematics prnpc.r. It is a philosophical 
question that migh t have something to tlc1 with the appropriale logic for our 
present level of knowledge. Godc:l' s incompletcne~s U1corern was proved \ lith 
de terministic logic. 

We can go on and on but for tltc optimist - for one who sees a gold mine 
in a desert of contradictions - this on ly augurs well for mathematical research . 
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2. Singular Fundions 

As for first example of singularities of the third type. we refer to the 
ca.lculus of set-valued functions. A formal thc.ory is developed in 6. It is lhc 
appropriate mathematics for probabilistic motion which is immediately applied 
to some fundamental problems of physics, especially in the study of the ~ave 
packet and path integration in quantum mechanics. It contains the basic ingredi­
ents of a calculus: generalized no.tions of limit and continuity and the generalize-d 
integral, derivative and oscilh\tion. A more general treatment of generalized 
integration differentiation and pulsation is given in 3. 4 and 7. This theory is 
ope11 to further research; in particular, the counterparts of the important theo­
rems of elementary calculus. such as the mean value theorems ror U1e integral 
and derivative, have yet. to be developed. 

An integro-differcntial geometry ba~ed on the generalized integral and 
derivative can be devdoped as well. That would be a modificatjon and exten­
sion of the fommlation in 3. Instead of introducing a probability distribution on 
the control set. a~ done in 15, we introduce a probability distribution on the set 
values of the derivative at each point (t,x). For example, suppose the set-values 
or the derivative function at the point (t,x) in Rn+ l are given by 

(I) 

where !4x is a compact set iu the vector ilcld of direction vectors <md the set­
values of g lie in R n+ 1. Suppose, further, that we introduce a probability 
distribution function Pnt on the set value g(t, X, nlX), then the behavior of IJlC 

trajectory at the point (t, X.) can be described by the quadruple (t. X, g(t, X, r21x)• 

p1x(·)) and we can set 

(2) x = j (•) dp1x (•) = E(t, x ), a.c .• 
{gt:x} 

where { g1x} is the set-value of g at the point (t. x) and E (t, x) is tile expectation 
point. TI1us, equation (2) can represent tl1e equation of motion of a probabilistic 
dyuam h.:al sys tem. The idea is to transfonn first U1e !id -valucd function g into 
!be wcll-defloed expectation function E(t, x). 

Of course, we must assume some measurability conditions to i11surc exist.­
enct~. Uniqueness iii not necessary for purposes of qualitative mathematics ; in 
facl, more information can he gaineu from the space of so lutions and tJ1e study 
of its structure. However, ln situations where uniqueness is needed. some 
Lipschitz condition on x for each value of g would suffice. In that case, given 
the initial condition x(l

0
) = xn, we can express the solution of Equation (2). as 

(3 ) t 

x(t) = X
0

+ J ( J C·) dps(o))ds, 
to {gsx} 

using a standard technique in differential equations . 
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Now we focus on another singulari ty which used to be a paradox. rt was 
first raised by Lehc~quc :Uld used hy Young to spur the development of general­
ized curves - a tn<\ior achievement in rnatlJCmatic:,: that resolved tllc PctTOn 
paradox 15 and opened up many new fields of m:tthemat.ics. 1 W e usc it here for 
a different purpose. 

1) Let s be any line segment and denote ils length by lsi Let t\B he a line 
segments of length IABI < lsi. Then scan be Jefonncd continuously Lo fonn two 
sides AD and DB of triangle .\BD (figure 1) . Join the midpoint P of AD to tile 
midpoint Q of AI! and the point Q to tJlC midpoint R of DB as shown. The 
segments PQ and QR an~ parallel. respectively. Lo lhc sides DB and AD o f the 
triang le. From tlw geometry or tlle llgurc, the kngth of tllc polygonal line 
APQR B is equal 10 the length lsi of line segment s whid1 now form s tl1c two 
sides of J\D al!ll DB of triangle AUD. Repeat this construc tion lo ohwin. at tbe 
nth stc.p, a polygonal line Cn from point A to point B whose h;ngth i:s also lsi. 
I.ct 11 - oc. Then lhe pol ygonal lint~ C'

0 
approaches its set limit or projection 

limit AO. Let that limit he f. It is clear that f cninctdes exactly (poiotwisc) 
with side AR but its length is given by 

lim 
[]- 00 

lC
0
1 = lim ls! 

n- oo 

which is distinct from lAB!; in fact, !~I> !Afil. 

D 

Q 

Figure l 

= lsi 

This par~<l<.n: is a ~old 111io~ of ideas and is almost inexhatt~tible in its usrfulness. The author 
was so in~pircd by its potential that he wrote a poem. "Mathemagic" which appeared in "Heartland: 
Po.:ms from a.ll and Su ndry." Kalika.~an Press. 199 1. 
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~ince the real number lsi is an arbitrary numba greater than IAH I. we have 
anuthcr case pf <l ~et -vatued function here but Ibis hmc a set-valued funclinn on 
sets (see reference 6 for functions on S(.; ls). In fal'l, given a ny real numher r > 
IABI. there exists a po lygonal· line of length r that tenus to AH puint>vise and 
whose length Tl'mains r. We can look at the scgnwnt "'H as ar1 infinity of 
distinct tmt w itH.:ident curv t.:s. distinct because their l e n gth~~ ' an: disti nct. It is 
d ear that tl1C Gtrdinalit y Of the sets of lt:nglJlS of these COincident curves>:'\s 1Jfl, 
the cardinality of the continuum . We dctinc a gcncrali'led notion of length 
L(A H) of 1\B as set lit\ HI. ""), a h~l lf open extended interval. where IABI is !be 
ordinary k ngth of the.: segment AT3. Tim~ the intimum of t11e sct -vahH~ of I.( A}{) 
is the ordinary lcugtJ\ IABI of AB. Any numhc.:r r 1: I!ABI. oo ) i~ a r <utin1lar 
value of the generalit.eu length L(AJ1) . Jt is d e;u that only a curve l>f line 
segment in the p:anc wi1h ordinary length lsi c_ IAHI can he de lnnHcd in t1Ji~ 

manner. wi th length preserved. lu coinc iuc with UlL' segment AB whose unli ­
nary length I '- IABI. 

In thi~. construcli(ltl 1l1e choice of AB is arbitnuy. 1-lcnn ;. given f > o. we 
can deform auy rectifia ble curve r of any nrdin<U')' length r ~ e. 110 matter how 
large. into a ncighhorhood S of some point of diameter Ll fS l < f . with iL'> 
origiual ordinary length preserved. I ,ct lAlli = {3 < e and r 2 E. \"ic first clcto nn 
<' into two sidl.:s AD anti DB llf isosceles triangle AB D. where 1/\Di + IDB I = r 
ami IAHI = fj and pnx:ecd wi th t11c same constru(.;tion ahove. We.: pn1cced far 
enough, that is, we let n he large cnllugh that the polygonal curve Cn would lie 
iu the r-ne1ghhorhoou of A B in the supremum nom1. By ronslruetiou. the len gill 
nJ' (' is preserved and is equal to !he k:ngth IC

11
1 = ICI at 11Jc nth step in tJ1e 

construction. 
The moral of lllL' story ht.:rc is tlult any l·urvc.: of any length can he de­

funned. with its length preserved, to lit into an arbitraril y small ndghhorhcx>d of 
n sc~men t m a point. 

Since ordin~uy length can he a vector representing a measure pf any kind 
- mass. energy. velocity. etc. - t11i s consu·uction has a lot of implicalilms: it i~ 
possihk to romprcss a ~reat amount or matter L>r tremendous ~nergy or a great 
mass into :.111 infinitesimal clement of space that is not dC[CCtahle hy l~ lcctromag .. 
netic means due to ditlcrences in orders of ma!!nitmJcs both in tcnns or energy 
level as well as frequency and wnw length in the case of an oscillatory dyn;uni­
cal sy~t.cm . <A sequel, "Some Mathematical and !'hysical Prind ples of Surerstring 
Theory'' has an elaboration on tllis importam point t. 

Exw11ples of such great concentration of energy arc the ~nergy trapped in 
Lllc nucleus of an atom and U1c hlack hole . Neither of them is directl y detectable 
by e lec tromagnetic means. A recent conjecture by Hawking l says that e lec tro­
magnetic waves escape rrom a black hole where gravitatioual force is dominant. 
We assert here lllal what is referred to as strong uuck:u forces or hinding force 
in [J\c nucleus of an atom is the result of interaction among the building blocks 
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of matter, the same interaction responsible for gravitation, at a higher energy 
range above that of the c lectrom!lgnetic range by several orders of magnitude. 
We will deal wiU1 this maucr eh;ewhere . 

For our first application of this idea, we consider an oscillation of the type 
f(x) = sin°w. Oscillation is a umversal phenomenon in physics and is the key to 
an undcrst.;mding of important physkal singularitles. The energ y of an oscilla­
tion is given by hu where h is the universal Plank's constant and v is the 
frequency. As5ume for the moment that matter consists of high-frequency oscil­
latory strings which we shall represent by oscillato ry curves. Then t11c total 
energy of an oscillatory sys tem (oscillatory c urve) is pwportiona.lto its leng th. 

Given an osci llatory curve K, whicli is rectifiable, it can he defonncd, 
with its length preserved. into the two sides of an isosceles triangle AHD on 
base AB. There exists an oscillatory curve from A to B consisting o f two wave 
leng ths whose length is equal to that of the polygonal line APQRB of the ahnv~ 
constiUction shown i n Figure 2. Replicate this construc tion on tJ1e triangle APQ 
and QRB to be able to construct an oscillatory curve K2 from A to B consisting 
of four wave lengths. each or which corresponds and is equal in lcngtll l.tl the 
combined length or two sides of an isosceles triangle of t11e polygonal line at 
that stage in the construction shmvn in I :igurc 2. T hus. we have a tiner osci lla­
tory curve from A 10 U whose k ngth is eq ual to that of C. Continuing. we 
obtain, at the nth step, an osci llatory curve ~ from A to R whose length is 
equa l to that of Cn in the construction shown in Figure 2 and. then:: l()rc. :usn 
cquaJ to that of K. K

11 
tends to AJ3 pointwise w> 11 ~oo. Since the length of AB is 

arbitrary. we can choose il to he or lcngU1 less th:m c:. c > 0, and xn we c;ul 
shrink an oscillatory curve, \Vi th Jeng U1 preserved. into :m arhit raril y small 
ne ighborhood of a segment or a point The construction is slm>vll in Fi.!!urc 2. 

D 

Figure 2. 
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Tht~ limll of sudl a curve alpug a segment is a generalized curve. Such an 
infinite.simal oscillation. fur sufficiently large n, would not interact wi th macro­
oscillation such as an electromagne-tic wave because of the difference· in orders 
of magnitude in tcnns or both frequency and wave length. With this construt:­
Lion, it. is pos~ible to store a great amoum of energy in an infinitesimal oscillation 
\Vitlwut being detected by electromagnetic means. We state tllis as a Theorem. 

Theorem. Given an oscillatory curve K, any nwnber e > 0 and a line 
segment AB, t.IH;m exists a continuous defmnwtion of K into a fine oscillatory 
curve K inside some e-neighborbootl of AB which preserves the length IKI of the 
curve K. 

Since the length IABI can be chosen arh1frari!y small, we als() have tllc 
following tlworcm : 

Tlu~on~rn. (]i vcn m1y oscillatory curve K, there exis ts a continuous dcliJr­
mation of K, with JcngLh rrescrvcd, into an arbilnnily small neigllborhoo(1 or a 
point. 

Proof Let A be a given poim in the plane, B a point in tile c-ndgbborbood 
of A and suppose !AB\ = t3 > 0. There exists a defixmation of K into two sides 
AB and DB uf an equilttteraJ triangle AHD where fADI + !DB!"' IKL h>llowing 
the construction above there exists a sequence of polygonal curves Cn and a 
corresponding oscillatory -.:urvc K11 such tlwt fnr ead1 n , IK111 = ICnl = IADI + 
IDBI and Kn t\:nds to tbc &cgmcnt AB. I-Ience tbere exists a JXlSitive integer N 
such Hwt whenever n ~ N. 1.hc curve Kn would lie inside the ::-neighborhood 
of A. 

Note that in each case the oscillatory structure is preservt~d as well as iLs 
!cngiJr. Thus it is possible to shrink an oscillatory cun't: of any leng th into an 
infinitesimal oscillation at a point 

Now, let ~ > 0, where ~ b small and let K he an oscillatory curve of large 

length IKI. Let E = {312 < I~}. As before, we can deform K into ll1c two sides of 

an isosceles trhmgle ABD .Zith base AB, where IABI = e. Let h he t!J.c altillldeot 
this triangle. Then h is roughly IKI/2. By t11e Arcllimedian property of the reals, 
there exists somt~ positive integer n such that 

(4) IKI IKI IK! 
< ::;; £ < 

211+2 2U+ l 2n 

Therefore, in tJ1e sequence of oscillatory curves Ki wil11 !Kil = IKI, for each 
i = 1, 2, ... • which tends towards tl1e line se-gment AB, there is one whose 
amplitude satisfies the inequality (4). We stat·~ U1is as a theorem. 

Theorem. Let K be an oscillatory curve with large length !KI and let 

f3 > 0. E = {312 < 1~1 . Then one can shrink the osdl1atory curve K into an 

arbitrarily ~mall neighborhood of a point wiU1 it<> length preserved and ito; ampli­
tude prescribed to satisfy 
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IKI IKI IKI 

for some integer 11. 

So 1:1r. tJ1c 1Jscillatory curws we Llavc con:-.idered are tlrtliuary ll~l'illations. 

i.e, pcriodk. anti then cyua tinn i~ giv(:ll oy y = ~ir.nx. where ll i~ a pos itive. 
integer. The conslruct iou l!old:. for any n:ctifiahlc curw (e.g .. ah~o[ut cly coll­
tinuous curve) . In p;u·ticular. wc can allflw U1c frequency v 111 progressively 
int.:rt~asc in mx:onlancc wi th the ah11VC deformation. The <.:urvc lh.tt wi ll JD tilts 
is the iopolngist s ine cmvt: given hy 

where n is a p11sitivc integer. This ha.'i the properly that it can pa"·k au uscilla· 
tory curve of any lt:ngtli int.o an t>nci.[!hborhooLl of x = 0. Tlli~ has bc1'n CPil'iitkred 
in (6). 

We shall etHtsidcr clscwhat: the 1,!(~ome!ry of oscill<1lions. Sullkc it to say 
at tl.li~ pomt that if we think -A a [ 1ni \ crsc where sm:~ll units nf m:lltcr or ene rgy 
are in osl:i!latory motion. e spcci;;ily infinitesimal nwthHl. l.i.lt'H the se uniL-; can 
be Oistiii)!Ubhe d hy lhc geometry Of lhCir OSl: iJiatiOIIS in [CrilL\ of alllp!itlldC, 
rrequcncy and structure sollit' of which may exist tnllnite~imall y in high<.:r di· 
mension~. Some such iHfin.itcsimal dynami~a.l systems may he ~talmnary or 
slow -moving, other:; fast muving. ;uJd stll l others may han: alrnosl iufinit~~ 

speed. We also allow all possihlc dis tortions of !he usc illa tt1ry motion even as 
far as set -valued limits in which case we cmcr the subject cuns!tlcrcd in (()) . It 
they are at l\igh energy levels hut in infinitr . .;imal motions, they arc undctccwblc 
in their normaJ s tates hy other fNces, such as ckct.roma;!net.ic Clll' rgy. ,lui:' tn 
difference in orders ot magn itutlc . I !ere lie~ the key t. 1 an uutlerstandin~ of 
gravillttion which will he discussed clsewht~rc. 

CONClXSlON 

We cotH.:lude this artick wllh snme nhservations: 
1. Both Relativity and Quantwn meclwnic~ are dt·.,criptivc theories and 

reduce motion to g.t:omctry in tenm of curvatures or stnH.:tures dcscribl~d hy 
cquat.ions and runctio n!';. Whilt: such~ dcsc..:nption is hig!lly accurate al this time 
and has predictive vnlu(\ neither Relativity 11m Quamum nH.:chanics explains 
why nature behaves this way . In tbat sc.n<;e btlth arc a bit my>.tical and ncitJ1cr of 
tltt!m is a dynwni<.: theory. 

2. [n the world of Relativity and Quantum Mc~.:han.ics, existence is ths­
crctc - that is the implication of t11e quantization principle. That the Universe 
continues w exist \vith a certain level of continuity and reg ularity implies that 
there is a hidden or invisihlc region- hidden !rom hoth theories- that provides 
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Lhc continuity. fn fact, physius1s ha\'e raised the issue of bidden or dark maucr 
L:tnnroscd of at kast l)Wt,. tlf the mass of the Univl'rse thal is unaccmmted for at 
lhis time. 

3. The traditional notion of gravity by Relahvity Joe-; not explain acti<m 
at a distance across empty spa~e; Relativity only J esni hes it. 

4. The tremendous energy stored in the nucleus of an awm c:u1 be e:-:.­
plainc:d hy clusters of such highly (: flcrgetic infinll<~simal oscillatory material 
whll'h \W can wk<: as the bui I ding blocks nf maucr. 

:'. Rc~onance caused hy the entry of a ncutnm at the right cncr;!!Y slate or 
abrupt change in the dectromagm·tic field could unscrew sud1 !-.tation:.~ry infllli­
te~imal oscillation leading. to the spliUing nr the nucleus and rele<t~c nf tremendous 
energy; such energy can be n::kascd also by abrupt c.lwngt: in potential 1)1' 
vo ltage such as what triggers a volt of lightning. 

6 . The discrctt.: existence of a subatomic paT1idc in fli~ltL in <Kcordance 
wi Lh tllc quantiz~ttion principle of quantum mechanics. could be l1Ue to nuctua­
lion:-- in energy kvcl of the clw;tcrs of energy units in !light; l1lc llic.crctc cxi.ste.rKc 
"r a vector bosnn cnincidcs with tllc wave pa.:k~~~ nf the corrcspunding energy 
unit in !light and its observed <li1;crctc cxisiCIIc.c is Jlso due to t'luctuation~ 111 

urdcrs or magnitude of their oscillations. 
7. T!Jc lluclUatious in energy lt~\·cls nf the vector huson wwards the 

undetectable level could explam the loss of ekctromagnetic intera~:tion and 
other fonns of resistance and energy dissipatiOn which could in turn, l.!xplam 
further the phenomenon of supcn:onductivity. ITcrc we raise the. possibility of 
transfer of energy without a carrier in the vis ible region nf matter. This implies 
t.hc t~xistcnn: of a 1..:arricr at t lw invisible region whidl thcrcfmc would uot 
iutcract with electromagnetlc entities. 

8. l~aJiation from an ntorn is osci llatiOII that has bce 11 r,:<luced to the 
electromagnetic rangl~. 

9. Gravi111lion is cncrgy at a higher range ·.vilh tile energy licld as its 
medium; it dot~s nnt interact with other f(mns o[ energy at diffcrC'nt orJcrs nf 
magnitude botb in terms of frequency and amplitude; this lies up with Hawk­
ing·s conjecture that at an event horizon of a black hole. where gravitation has 
taken dominance there is radiation e.s{:apt:. If matter C<'OSisL<; or runclamcnta! 
hui lding blocks. then gravitation is interaction at this level of the constituent of 
maHer and that is how it acts on larger configuration such as buge masses. 

10. Observation of lhe spiral Galaxy suggests viscosity 011 the pan of the 
energy field. It is also elastic as it allows propagation of line oscillations. Tbis 
viscosity also explains the shift in tllc orbit of Mercury, an anornally in thl~ Solar 
system Uutt has puzzled physicists, including relativisrs . It is the net effect of 
b(Hh the absorption of the energy field by t11e sun and its rotation. 

11 . A new gravitational t.beory which has not been fommlly and math­
ematically fonnulated yet has emerged, based on an assumption of an energy-rich 
field between masses ratJ1er tllan an essentially empty space between t11em. 

This fonnulation will be dealt with in anotl1cr study. 
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