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ABSTRACf 

The existence of Cayley Algebras of order 2' is established by construc
tion. These are real division algebras which inc!IJde the real number.; R (order 2°), 
the complex numbers C (order 2 1 )  and the quatemions H (order 22) all of which 
are associative - and the Cayley numbers 0 (Order 23) which are nonassociative. 
This paper shows that all of these real division algebras have a common structure 
exemplified by the Cayley numbers and they all belong to a single family com
posed of classes of Cayley algebras of. order 2', where r is any positive integer. 
This is done by introducing the ZSM Process to construct all of these algebras. 

INTRODUCTION 

In 1 845 A. Cayley constructed a remarkable real division algebra of order 8 
(now known as the Cayley numbers 0) which is nonassociative, noncommutative, 
normed and contains as subalgebras the quaternions H (order 4), the complex 
numbers C (order 2) and the real numbers R (order l )  itself. G. Frobenius proved in 
1 878 that the only real associative division algebras of finite order are H, C and R, 
all of which are normed. Attempts to determine other normed real algebras of finite 
order led A. Hurwitz in 1 898 to the theorem that the only algebras of this type are 
of orders 1, 2, 4 or 8. In 1947, A. Albert showed that these are again R, C, H and 0. 
Then in 1 957, R. Bott and J. W. Milnor finally proved that the only finite dimen
sional real division algebras are of orders 1, 2, 4 and 8. Pursuing more general 
considerations, L. Dickson introduced in 1 923 a general method (called the Cayley
Dickson Process) and used it to constmct the class of order 8 real division algebras 
which includes 0 as its prototype. This paper shows that all real division algebras 
of order 2r (like R, C, H and 0) belong to a family of classes of Cayley algebras of 
order 2'. This interesting family is constmcted by introducing the ZS!\1 Process 
thereby proving the theorem that: There exists a class of Cayley algebras of every 
oder 2', where r is any positive integer. 
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DIVISION ALGEBRAS OF ORDER 2r 

Consider the algebra Ar = { V, F; +, x. ®, ®, . }  over the field F = R of real 
n u m bers. Take as the basis of the n-dimensional vector space V the set 
Ell = { e/i= I ,  . . . , n }  of n basis vectors over which the binary operat ion ® is defined 
by the ®-matrix Mr(Eil) = (mij), ij = i ,  . . .  , n, where 

Eq. ( I )  

e;, ej, ek' E Ell, and zij E F .  Every vector o f  this algebra can be expressed uniquely · 
as a linear combination of the n basis vectors in Ell' Thus, if a. b E A r, then 

ll 
a = 2: a; • e; and b = 

i = l  

ll 
L b·· C· J J 

j= l 

Eq. (2) 

where a ; . bj E F. Vee/Or multiplication is defined by bilinearity and the matrix 
Mr(Eil) so that the product a®b of any tw vectors a, b E Ar i s  given by the 
expression 

ll ll 
a ® b = I; f;j · (e;@e.i ) = 2: fi/ij ' ek (k= l , . . . , n) 

ij=k ij=k 

Eq. (3)  

where f�, = a;bj und the index ij=k means that the sum is to be extended over al l  
pairs of indices i . .i for which the relation holds :  c ;®ej = zij • ek. This can be 
expanded inlo 

Eq. (3 . 1 )  

By defi n it ion,  an alg.:bra A r  over a field F is a division algebra i f  it has a 
unity for vector mu l t ipl ication and every non-zero vector a E Ar has a un ique 

inverse a· 1 
E A,, that is ,  a®a· 1 = a· 1 ®a = e 1 , where e 1 is the u n ity of 

®-mult ipl ication. Such a vector a· 1 exi ts ip !lr i f  a vector a*, cal led the c01yuga(e 

of a, can be defined such that a®a* = a'®a = (N(a)·e 1 • where (a), ca l led the 
norm of  a, is a positive element of tbe field F. If such a vector a* can be defined 
in  Ar, then a· 1 

= a*/N(a) fu lfi l ls a}!' the requirements o f  an invcrse of a E  A r. 
To determine the nece snry and suffic ient conditions for the in ersc a· 1 

of a to exist in A r, first form the products a*®a and n®a* by mean of Eq.(3 . 1 ). 
For a* to be the conjugate of n, 
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a®a* = a*®a � L f
ih

'ek = 

i j=k 

{N(a)·e 1 i fe.@e. = z . . • e 1 I J IJ 

zero if dk = Z· · ·e 1 I J IJ 

1 3 5  

Eq. (4) 

where N(a) = E f.1J·Z·1J· (summed over al l i,j for which e.®e. = z ..• e1 ), f. _ a  a* and I J=J I J IJ IJ - 1 J' 
ai,aj. are the ·field coefficients of a, a*. These equations constitute the necessary 
and sufficient conditions for a· 1 to exist in Ar Any vector a* that satisfies Eq . (4) is 
a conjugate of a. If  a·· E Ar> then it follows that a· 1 E Ar 

Consider once more the three well known real division algebras: the Cayley 

numbers 0 (order 23), the quaternions H (order 22) and the complex numbers C 
(order 2 1 ). Since 0 contains H and C as subalgebras, then they all share a number 
of basic properties in common: 

I .  They all have orders (or dimension) o f  the form n = 2r, where 
r= 1 ,2,3. 

2. Their basis vectors e; E E11 satisfy the following sel of fundamental 
equations: 

(ifi ?: 2) 
ei®e 1 � e 1®ej = ei (for all i) 

dk -doe. (ifi#:.i, i, J· >_ 2) I J = J I 

. . . . . . . .  Eq. (4) 

3. Any vector a =  a 1e 1  + a2e2 + ,  . . . , + a11e11 Sa * 0) has a conjugate a*, a 
norm N(a), and an inverse a· 1 given by 

a* = a1e 1 - (a2e2 + . . .  + a11e11) 

N(a) = a2 
+ + a2 I . .  · n 

a-1 = a• 
N(a) 

Eq. (5) 

Eq. (6) 

Eq. (7) 

These properties are clearly exhibited by the matrix !ln3 shown in Figure l 
which defines an algebra � isomorphic to 0. Here, the submatrices !ln1 and i1l2 
define algebras isomorphic to C and H. re�pectively. Moreover. if the sign coeffi
cients of the entries of if� are separated into another matrix Z3 ( E8), then the 
resulting matrix S3(E8) can be seen to have the structure of the Klein group <E8; o> 
of order n = 23 shown in Figure 2. Note that I'll ' �n;an.d !ln3 have the form llJlr = 

(mi.), where mij =. ei®ej = zij • ek, ei, ei: ek represents baSIS vectors. and zij = ± I are 
sig� coefficients. ·This means that l'lr is simply the matrix representation of Eq. ( 4). 
where r = I ,  2, 3. These equations, however, do not completely define the operation 
� over the basis vectors in E11• Rather, they constitute a set of necess01y conditions 

that define a class of algebras of which the Cayley numbers are the protoype 
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The conditions given by Eq. (4) for any n = 2', where r is any positive integer 
can be generated to form a ®-matrix M,(E11) such that Eqs. (5), (6) and (7) hold. To 
do this, introduce two special matrices Z,(E11) and S,(E11) of the same dimensions 
nxn which shall be called the sign matrix and structure matrix, respectively. The 
sign matrix is defined as: Z1(E11) = (z;j), i .  j = 1, . . .  , 21, where zij = ±I �-F (the real 
numbers + I and - I ). On the other hand, the structure matrix is defined as: S,(E11) = 

eij), ij= I ,  . . .  , 2', where eij � e;oej, which defines the abel ian p-group <E11;o> of 
order 2' (where e� =- e 1 for all e;;E 1 En and e 1  is the identity element) which shall be 
called the Klein group of order 2'. Next, introduce the star product * .of an two 
n X n matrices A = (aij) and B = (b;j ), as the n X n matrix A* B = ( c;i), ij= I ,  . . .  ,n, 
where C;j = aijbij · Now, form the star product �f Z,(E11) and S,(£n) obtaining: 
Z,(E11)*S,(En) = (cij ), ij= l ,  . . .  ,2', where cij = Z;j 'eij = zij · (e;oe}. If we let z, (En)* ,(E11) 
= M,(E11 ) and set mij = cij. Then write: 

} . . . . . . . . . . . . . . . Eq. (8) 

This matrix M,(En) defines the operation 'Gl over the elements of the set E11• 
Consider the matrices ZlE8) and S3(E8) shown in Figure 2. If their star 

products, Zq(E8)*S3(E8) = M3(E8) is formed, one finds that M3(E8) has the same 
structure as WI3(E8). Moreover, if the submatrices M2(E4) = Z2(E4)*S2(E4) and 
M 1 (E2) = Z 1 (E2)*S1 (E2) are similarly formed, one observes that they are also struc
turally similar to W12(E4) and lli1 (E2), respectively. This shows that all of the real 
division algebras C, H and 0 can be defined by ®-matrices of the type M,(E11) 
defined by Eq. (8), where n = 2r Note that the Z-matrix Z3(E8) shown in Figure 2(a) 
satisfies the following equations: M,(E11) such that Eqs. (5), (6) and (7) hold. To do 
this. introduce two special matrices Z,(E11) and S,(E11) of the same dimensions n X 
n which are the sign matrix and structure matrix, respect ively. The sign matrix 
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zii =- I  (if i�2) 

zil = zl i  = +I (for all i) . . . . .  . . . . . . . . . . . . . . . . .  Eq.(9) 

zu = -�i (if i * j, i , j�2) 

1 3 7  

which simply corresponds to  the sign coefficients of  E't]. (4). The structure matrix 
S1 (E8 ), on the other hand, defines the Klein group <E8 ;o> of order 
n = 8. This group contains tl1e Klein group <E4 ;o> and <E2 ;o> as subgroups 
which are defined by the submatrices SiE4) and S 1 (E2), respectively. Thus, as 
noted earlier, the real division algebras 0, H and C have a common substrcuum: the 
Klein group of order n = 2'. 

It is clear from the above discussions that the construction of the® -matrix 
M,(E11) = Z,(E11)* S/E11) satisfying Eq. (4) can be carried out for any value of 
n ="' 2', where r is any positive integer. Such a matrix, in tum, can be used to 
construct a real division algebra A, of order n = 2' which we shall call a Cayley 
algebra of order 2'. In such an algebra any vector a *  0 has a conjugate a* of the 
form given by Eq . (5), a norm N(a) given by Eq. (6) and an inverse a· 1 given by Eq. 
(7). 

THE ZSM PROCESS 

To consrruct the ®-matrix M, � M ,( E11), first form a s ign matrix 
z, = Z,(E11) that satisfies Eq. (9). Note, however, that there are many such sign 
matrices zr,k = Z,(E11)k that satisfy these equations. Using Eq. (9), write: 
z, = Zr(+) + Zr(-)' where Zr(+) is symmetric while Zr(-) is skew. The skew matrix 
zr(-) = (zjj) is such that z;j = -Zj i if i'l'j and i ,  j �2; otherwise z;j = 0. Because of this 
the set z, of all Z-matrices zr,k satisfying Eq. (9) has exactly N( Z,) = 2m 

n - 1  
distinct elements, where m = L: (n- 1 )  and hence k= l ,  . . . , 2111 With the aid of i=2 
Eq. (8), these 2m matrices zr,k E z, can be used to construct 2m ®-matrices of 
the form 

(k = I ,  . . . .  ,2m), Eq. (8. 1 )  

where S, = S,(E,) defines the Klein group <E11 ;o> o f  order 21• These 2111 matrices 
M1 k form a set Mr Call this method of construction the ZSM Process. 

· Every Mr,k EM, defines a real division algebra Ar,k of order n = 2'. Hence, 
there are 2111 algebras of this type forming a set .)\ which defines the class L' ['] 
of Cayley algebras of order 21• These 2111 algebras, however, are not al l  distinct. 
Since M1 k = z, k *S1 k defines ® over E11, then if  P rr is an n X n permutation matrix 
associated with' the 'permutation 1t on the n numerals I, . . .  , n representing the n 
rows/columns of zr,k it fol lows that the algebra A(�,l defined by 
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M(n) = (P 7 P )*S = z<nl *S r,k !!'"'r, k 1! r r,k r Eq. ( 10) 

is isomorphic to t11e algebra Ar.k defined by Mr.k• t11at is A<�!k = Ar.k· This 
isomorphism is determined by the one-to-one correspondence to t.he 

A,,k : 

A(n) . 
r,k · 

I 

t 
1l 

2 

t 
rr2 

' .) 

t 
7!3 

t 
1ll 

11 

t 
1!11 

of the elements of their sets of basis vectors, where there are set i = e; and 
1ti = eni for simplicity. AltlJOugb there are n! possible nxn permutation matrices 
pIt' only (n-2)! of these preserve the form of zr under tlle transfomlation: 
Zr -+ Z� = P 7-ln· Thus, given any matrix Zr,k E Zr' there are also (n-2)! 
matrices M<�!k E . ..Mr that are structurally equivalent to Mr,k and which define 
isomorphic algebras Ar,k· Hence, the Set )\ has at most 201/(n-2)! non-isomor
phic (or distinct) Cayley algebras of order 2r. Some of these algebras can also be 
obtained by the so-called Cayley-Dickson Process and are caiJed Cayley-Dickson 

Algebras . . The ZSM Process, on the other hand, enables one to obtain all of the 
2m members of the class L' [)\] of Cayley algebras of order 2r, where r is any 
positive integer. Thus, the following important 

Theorem. There exists a class of Cayley algebras of every order 2r, where 
r is any positive integer. 

Every algebra Ar.k in t11e class L' [)\] contains a series of r- 1 sub-algebras 
of orders 2 1 ,  22, . . .  , 2r- l which bdong respectively to the classes 
L' [:.td, L' [�] • . . .  ,L' [)\_ 1 ] .  This means that L'[)\1 contains all of t11ese smaller r-1 
classes as subclasses in which each class L' [:.txl is contained in t11e next larger 
class L'[�+1 ] .  In general, since r is any positive integer, then there is an infinite 
number of classes which fonn an ascending series: 

This infmite series constitutes the Cayley family of real division algebras in 
which each class L' [�] determines a subfamily consisting of t11e finite ascend
ing series: L' [:.t1 ] < L' [�] < . . .  < L'[�]. 
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'Tile class C [J.I1 ] contains only 2° = I member A 1  which is isomorphic to 
tJ1e complex numbers C. C[�) bas 23 = 8 members of which only four are 
nonisomorphic. On tlle otl1er hand tlle class e[�) has 221 members all of which 
are nonassociative; at least 720 of tllcse arc isomorphic to tJ1e Cayley numbers 
0. Any algebra belonging to a class C[}\1 in which r � 2 is noncomrnutativc. 
And if r � 3, it is always nonassociative. 

To illustrate the construction of Cayley algebras of order 2r by tlle ZSM 
Proces , consider tlle case of tlle 2m algebras A2 k where r = 2 and n = 4. Here, 

J ' 
m =.� (4-i) = 3 and N(Z2) = 23 

= 8. Figure 3 shows tlle eight matrices � k 
.� . 

(k= I ,  . . . , 8) which, togetller witll the matrix S2 shown in Figure 2(b), are used to 
form tlle matrices � k (k= I ,  . . . , 8) shown in Figure 4. These matrices can be 
used to construct eight Cayley algebras A2,k of order 2

2 
= 4 forming tlle set � 

which defines tlle class C [�]. It can be shown l11at A2,3 = A2.7, botll of which 
are associative and A2, 1 = A2y A2,2 = A2,6, A2,4 = A2,8 all of which are 
nonassociative. The smallest nonassociative real division algebras are tllerefore 
of order 2

2 
= 4. Note tllat if tlle permutation matrix P a represents tlle permuta

tion ex = (23) on the numerals 1 234 representing tlle 4 rows/columns of Z2 3, 
then M(��3 = (P a�.l a)*S2 = M2,7. Hence, A2,3 = A2,7. In fact iL can be sbo�n 
that both A2,3 and A2,7 are isomorphic to the algebra Q of quaternions. Also, of 
tlle eight algebras in A2, only A2,3 and A2,7 are associative and normed. 

As a final example, Figure 5 sbows Ule matrix M4.p which defines the 
Cayley algebra A4,p of order n = 24 = 16 belonging to the class C[J.I4) .  This is a 
real d iv is ion a lgebra contain ing 0, H and C. It is nonassoc iative and 
noncomm utative, and it is not normed. 

The Cayley algebras of order zr, where r � 3, are not just curiosities but 
they have important applications in both pure and applied mathematics. Thus, 
Eric Temple Bell remarked: "In passing, it seems rather remarkable that such a 
truncated algebra as [that of the Cayley numbers] could have any physical 
sign ificance, but it has been applied to the quantum theory . "  

SUMMARY 

This paper discussed real division algebras and showed that they have a 
common underlying structure exemplified by the algebra of Cayley numbers. 
This observation led to the construction of Cayley algebras of order zr, where r 
is any positive integer. In doing this, the ZSM Process was introduced using 
two special matrices (the sign matrix and structure matrix) to construct another 
matrix (the x-matrix)\ that defined the Cayley algebras of order zr. These algebras 
were shown to form a family of classes which established the existence of a 
class of Cayley algebras of every order zr where r is any positive integer. 
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2 3 4 5 6 7 8 
ill , 2 -I  4 -3 6 -5 -8 7 

. . . . . . . . . . . . . . . . . . . . . . .  

3 -4 - I  2 7 8 -5 6 
ll112 4 3 -2 - I  8 -7 6 5 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

5 -{j -7 -8 - I  2 3 4 
6 5 -8 7 -2 -I -4 3 
7 8 5 -{j -3 4 - I  2 
8 -7 6 5 -4 -3 2 

Figure 1 .  The ®-matrix IR3(E8) = (m . .  ), where m .  = e.®e. = z1, which IJ 1J ,I J J 
defines the real division algebra u3 of order 23=8 isomorphic to 
the Cayley number.� 

+ + : +  + + + + + 2 : 3 4 5 6 7 8 
z ,  + - = +  - + - + - s ,  2 I : 4  3 6 5 8 7 

+ - - + - + - + 3 4 2 7 8 5 6 
z2 + + - - + - + - s2 4 3 2 8 7 6 5 

. . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . 

+ - + - + 5 6 7 8 2 3 4 
+· + + + 6 5 8 7 2 4 3 
+ + + + 7 8 5 6 3 4 2 
+ - + + - - + - 8 7 6 5 4 3 2 

(a) ZlEs) (b) S3(E8) 

Figure 2. (a) Z3(E8) = (z1j), i j = 1, . . . ,8, is a special sign matrix; for 
simplicity, ± =  :l:l. (b) S3(E8) = (eij iJ= 1, . . .  , 8, where eij = eioej 
is the structure matrix of the Klein group <E8;o> or order 8; 
v=e •. 
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+ - - + + - - - + - - +  + - - -

+ - - - + - + - + + - - + + + -

z 2,3 [+ + + +J [f- + + +J [+ + + �] [+ + +  J + - - - + - - - + - - T + - - +  
+ + - - + + - + + + - - + + - + + + + - + + - - + - + - + - - -

1 4 1  

Figure 3. Eight possible Z-matrices Z2 k that can be used to form eight ®· 
matrices M2 k (shown in :Fig�re 4) satisfying Eq. (8) 

, 

� 
2 3 

.� [l 
2 3 .i] [l 

2 3 

·J [l 
2 3 

.:] -I 4 -I 4 -I 4 -I 4 
-4 - 1 -4 - I  -4 - I  -4 - I  -2 
-3 -2 ' 2 - I  3 -2 - I  3 2 - I  -J 

M 2 . 1 M 2 ,2 M 2J M 2.4 

IH � :il [H � ·� [H � .� [l 
·

: � ;l l� 3 2 -J 4 3 -2 -J 4 -3 2 -� 4 -3 -2 -U 
Figure 4. 

M 2,6 

Eight ®·matrices M2 k satisfying Eq. (4). Note that Mz 3 and 
M2,7 are both isomorphic to the algebra Q of quaternions.

' 
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' 

2 � 3 4 5 6 7 8 9 10 I I  12 13 14 15 16 

M l 2 - I  � 4 -3 6 -5 -8 7 10 -9 12 - I I 14 - 1 3  1 6  - 1 5  
· · · · · · · · · · · · · · · · · · · · · ·  

3 -4 - I  2 7 8 -5 .Q - I I  12 -9 10 - 1 5  16 - 1 3  14 

M 2  4 0 -2 - I 8 -7 6 -5 12 - I I 10 -9 16 - 1 5  14 - 1 3 J 
. . . . . . . . . . . . . . . . .. . . . . . . .... . .. . . . . . . . .  

5 .(j -7 -8 - I  2 3 4 - 1 3  14 - 1 5  16 -9 10 - I I  12 

6 5 -8 7 -2 - I  -4 3 14 - 1 3  1 6  - 1 5  10 -9 12 - I I 

7 8 5 .(j -3 4 - I  -2 - 1 5  16 - 1 3  1 4  - I I 12 -9 10 

M 3 8 -7 6 5 -4 -3 -2 -I 16 - 1 5  1 4  - 1 3  1 2  - I I 10 -9 
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·  

9 - 1 0  I I  - 1 2  13  - 1 4  15  - 1 6  - I  2 -3 4 -5 6 -7 8 

10 9 - 1 2  I I  - 1 4  1 3  - 1 6  1 5  -2 - I 4 -3 6 -5 8 -7 

I I  - 1 2  9 - 1 0  15  - 1 6  13  - 1 4  3 -4 - I  2 -7 8 -5 6 

12 1 1  - 1 0  9 - 1 6  1 5  - 1 4  1 3  -4 3 -2 - I  8 -7 6 -5 

13  - 1 4  15  - 1 6  9 - 10 I I  - 1 2  5 .(j 7 -8 - I  2 -3 4 

14 13 - 1 6  15  - 1 0  9 - 1 2  I I  .(j 5 -8 7 -2 - I  4 -3 

15  - 1 6  1 3  - 14 I I  - 1 2  9 - 1 0  7 -8 5 -6 3 -4 - I  2 

16 15 - 1 4  13  - 1 2  I I  - 1 0  9 -8 7 .(j 5 -4 3 -2 - I  

Figure 5. This ®-matrix M4
,p 

defines a Cayley algebra of order n = 1 6. 
Note that its submatrices M3, M2 and M1 have the same struc-
tures as those of 0, H and C. 
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