SINGULAR GRAPHS: THE SUM OF TWO GRAPHS ${ }^{1}$

SEVERINO V. GERVACIO
MSU-Iligan Institute of Technology
Tibanga, Iligan City 9200

Abstract

The sum of two grapls G and H, denoted by $G+H$, is the graph obtained by taking dis joint copies of G and $I /$ and then adding every edge $x y$, where x is a vertex in G and y is a vertex in I. The sum $G+\boldsymbol{H}$ of two grapls may be singular or non-singular, independently of the singularity or non-singularity of G and H .

Here, G and H are limited to complete graphs, paths and cycles. Formulas for det $A(G+f f)$ are derived and consequently, necessary and sulficient conditions for the sum to be singular are obtained.

INTRODUCTION

By graph G is meant a pair $\mathrm{G}=\{\mathrm{V}(\mathrm{G}), \mathrm{E}(\mathrm{G})\}$, where $V(\mathrm{G})$ is a nonempty set of elements called vertices, and $E(G)$, is a set of 2 -subsets of $V^{\prime}(G)$ called edges. The adjacency matrix of a graph G with vertices $v_{p}, v_{2}, \ldots, v_{n}$ is the $n \times n$ matrix $A(G)=\left(a_{i j}\right)$, where $a_{i j}=1$ if v_{i} and v_{j} are adjacent, and $a_{i j}=0$ otherwise. The graph G is said to be singular if $A(G)$ is singular, i.e., det $A(G)=0$; otherwise, G is said to be non-singular.

The sum of two graphs G and H, denoted by $G+H$, is the graph obtained by taking dis joint copies of G and H and then adding every edge $x y$, where $x \in V^{\prime}\left(G^{\prime}\right)$ and $y \in H$.

The graph with n vertices where each vertex is adjacent to the remaining $n-1$ vertices is called the complete graph of order n, denoted by K_{n}. The path of order n, denoted by P_{n}, is the graph with n distinct vertices $x_{l}, x_{2}, \ldots, x_{n}$ and whose edges are $x_{i} x_{i+1}$ for $i=1,2, \ldots, n-1$. The cycle of length n, denoted by C_{n} is the graph obtained from the path P_{n} by adding the edge $x_{1} x_{n}$.

This paper studies the sum $G+H$ of two graphs G and H where G and H are any of the graphs K_{p}, P_{q} and C_{r}. Formulas for $\operatorname{det} A(G+H)$ are derived and singular graphs $(\bar{i}+H$ are characterized.

[^0]
SUM OF TWOGRAPHS

Rara (1991) has computed for the determinants of $G+H$ where G and H are any of the graphs $P_{n}, \mathrm{C}_{n}, K_{n}$ with only three exceptions, namcly, $\mathrm{C}_{m}+\mathrm{C}_{n}$, $\mathrm{C}_{m}+\mathrm{K}_{n}$ and $\mathrm{K}_{m}+\mathrm{K}_{n}$. The last sum is trivial since $\mathrm{K}_{m}+\mathrm{K}_{n}=\mathrm{K}_{m+n}$. The problem on the first two sums is settled here.

The adjacency matrix of the sum of two cycles C_{m} and C_{n} has the following form:

$$
A\left(C_{m}+C_{n}\right)=\left[\begin{array}{cc}
A\left(C_{m}\right) & \mathrm{M} \\
N & A\left(C_{n}\right)
\end{array}\right]
$$

where M and N are matrices of Is having sizes $m \mathrm{X} n$ and $n \mathrm{X} m$, respectively. For convenience, any matrix all of whose entries are equal to c will be called a c-matrix.

If A is any $m \mathrm{X} n$ matrix, denote by R_{j} its ith row and by C_{j} its jith column. The operation of interchanging rows (columns) u and v will be denoted by $\mathrm{R}_{u} \leftrightarrow \mathrm{R}_{v}\left(\mathrm{C}_{u} \leftrightarrow \mathrm{C}_{\nu}\right)$. The operation of adding to R_{i} the linear combination of rows $c_{1} R_{1}+c_{2} R_{2}+\ldots+c_{m} R_{m}$ will be denoted by $\left[c_{1} R_{1}+c_{2} R_{2}+\ldots+c_{m} R_{m}\right]+R_{i} \rightarrow R_{i}$.

Theorem 1. If $m \equiv 0(\bmod 4) \operatorname{or} n \equiv 0(\bmod 4)$, then $C_{m}+C_{n}$ is singular.
Proof: Without loss of generality, assume that $m \equiv 0(\bmod 4)$. Let $A=A\left(C_{m}+C_{n}\right)$ be the adjacency matrix of $\left(C_{m}+C_{n}\right)$. If the row operation $\left[-R_{2}+R_{4}-\ldots-R_{n-2}\right]+R_{n} \rightarrow R_{n}$ to A is applied, the nth row is clearly reduced to a zero row. Clearly, this row operation preserves the determinant of A. Thus, $C_{m}+C_{n}$ is singular.

Lemma 1. Let n he odd and $A=A\left(C_{n}\right)$. Then A is transformed to the diagonal matrix diag(1, 1, .., 1, 2) by the following sequence of 5 determinant-preserving operations:
(a) $R_{1} \leftrightarrow R_{2}, R_{2} \leftrightarrow R_{3} \ldots, R_{n-1} \leftrightarrow R_{n}$
(b) $\left[-R_{1}+R_{3}+\ldots+(-1) \frac{\mathrm{n}-1}{2} R_{n-2}\right]+R_{n-1} \rightarrow R_{n-1}$
(c) $\left[-R_{2}+R_{4}+\ldots+(-1) \frac{n-1}{2} R_{n-1}\right]+R_{n} \rightarrow R_{n}$
(d) $\left[-\frac{1}{2} R_{n}\right]+R_{n-1} \rightarrow R_{n-1},\left[-\frac{1}{2} R_{n}\right]+R_{n-2} \rightarrow R_{n-2}$
(e) $\left[-R_{n-1}\right]+R_{n-3} \rightarrow R_{n-3},\left[-R_{n-2}\right]+R_{n-4} \rightarrow R_{n-4}, \ldots,\left[-R_{3}\right]+R_{1} \rightarrow R_{1}$

Proof. Verification is straightforward.

Lemma 2. Let J be an $n \times r I$-matrix, where n is odd. Then the sequence of operations (a)-(e) transforms J to a matrix whose first n-l rows form a $\frac{1}{2}$ - matrix and whose last row forms a I-matrix.

Proof. Verification is straightforward.
Lemma 3. Let $A=A\left(C_{n}\right)$, where $n \equiv 2(\bmod 4)$. Then A is transformed to the diagonal matrix diag(I, I, .., I, 2, 2) by the following sequence of 5 operations:
(a) $R_{1} \leftrightarrow R_{2}, R_{2} \leftrightarrow R_{3} \ldots, R_{n-1} \leftrightarrow R_{n}$
(b) $\left[-R_{1}+R_{3}+\ldots-R_{n-2}\right]+R_{n-1} \rightarrow R_{n-1}$
(c) $\left[-R_{2}+R_{4}+\ldots-R_{n-1}\right]+R_{n} \rightarrow R_{n}$
(d) $\left[-\frac{1}{2} R_{n 1}\right]+R_{n-1} \rightarrow R_{n-1},\left[-\frac{1}{2} R_{n}\right]+R_{n-2} \rightarrow R_{n-2}$
(e) $\left[-R_{n-1}\right]+R_{n-3} \rightarrow R_{n-3},\left[-R_{n-2}\right]+R_{n-4} \rightarrow R_{n-4}, \ldots,\left[-R_{3}\right]+R_{1} \rightarrow R_{1}$

Moreover, the above sequence of operations reverses the sign of $\operatorname{det} A$.
Proof. Verification is straightforward.
Lemma 4. Let J be an $n x r 1$-matrix, where n is odd. Then the sequence of operations (a)-(e) transforms J to a matrix whose first n-2 rows form a $\frac{1}{2}$ matrix and whose last two rows form a 1-matrix.

Proof. Verification is straightforward.

Theorem 2. Let $m \equiv 1$ or $3(\bmod 4)$ and $n \equiv 1$ or $3(\bmod 4)$. Then det $A\left(C_{m}+C_{n}\right)=4-m n$.

Proof. By applying (a)-(e) to the first m rows and to the last n rows of $A\left(C_{m}+C_{n}\right)$, the following matrix is obtained.

1

$$
\begin{array}{lllll}
\frac{1}{2} & \frac{1}{2} & \cdots & \cdots & \frac{1}{2}
\end{array}
$$

$$
1 \quad \frac{1}{2} \quad \frac{1}{2} \quad \ldots \quad \ldots c \frac{1}{2}
$$

where, by Lemmas 1 and $2, I_{m}^{\prime}=\operatorname{diag}(1,1, \ldots, 1,2), M^{\prime}$ has $\left[\frac{1}{2} \frac{1}{2} \frac{1}{2} \ldots \frac{1}{2}\right]$ in the first $m-1$ rows and $[11 \ldots!]$ in the last row, $l_{n}^{\prime}=\operatorname{diag}(I, I, \ldots, I, 2,) N^{\prime \prime}$ has $\left[\frac{1}{2} \frac{1}{2} \frac{1}{2} \ldots \frac{1}{2}\right]$ in the first $n-1$ rows and $[11 \ldots 1]$ in the last row. Multiply rows m and $m+n$ by $\frac{1}{2}$ to get the matrix

$$
A^{\prime \prime}=\left[\begin{array}{cc}
I_{m}^{\prime \prime} & M^{\prime \prime} \\
N^{\prime \prime} & I_{n}^{\prime \prime}
\end{array}\right]
$$

where I_{m}, l_{n} are identity matrices and $M^{\prime \prime}, N^{\prime \prime}$ are matrices whose entries are all equal to $\frac{1}{2}$. If the operations $\left[-\frac{1}{2} R_{1}-\frac{1}{2} R_{2}-\ldots-\frac{1}{2} R_{m}\right]+R_{i} \rightarrow R_{i}$ for $i=m+1, m+2, \ldots, m+n$ is applied, the resulting matrix is block upper triangular and has the following form

$$
\begin{aligned}
& 1 \quad \frac{1}{2} \quad \frac{1}{2} \quad \cdots \quad \cdots \quad \frac{1}{2} \\
& 1 \quad \frac{1}{2} \quad \frac{1}{2} \quad \ldots \quad \ldots . \quad \frac{1}{2} \\
& A^{*}=\left[\begin{array}{cc}
I_{m} & M^{\prime \prime} \\
0 & I^{*} \\
&
\end{array}\right]=\left[\begin{array}{ccccc}
1 & \overline{2} & \cdots & \cdots & \frac{1}{2} \\
p & q & q & \cdots & q \\
& q & p & q & \cdots
\end{array}\right) q \\
& 4 \text {... } q \text { p } q \\
& q \quad \ldots \quad q \quad q \quad p
\end{aligned}
$$

where each entry in the diagonal of l_{n}^{*} is $p=1-\frac{m}{4}$ and each off-diagonal element is $-\frac{m}{4}$. It follows that det $A^{*}=1-\frac{m n}{4}$ and consequently, $\operatorname{det} A\left(C_{m}+C_{n}\right)$ $=4 \operatorname{det} A^{*}=4-m n$.

Using a similar argument and Lemmas 3 and 4, the following theorem can be established:

Theorem 3. Let $m \equiv n \equiv 2(\bmod 4)$. Then $\operatorname{det} A\left(C_{m}+C_{n}\right)=16-4 m n$.
By a similar argument and using Lemmas 1, 2, 3 and 4, the following theorem can be established:

Thereom 4. Let $m \equiv 1$ or $3(\bmod 4)$ and $n \equiv 2(\bmod 4)$. Then $\operatorname{det} A\left(C_{m}+C_{n}\right)=$ 2mn-8.

Theorems $1-4$ may be summarized as follows: The sum $C_{m}+C_{n}$ is singular if and only if C_{m}^{\prime} or C_{n} is singular.

Consider now the sum $C_{m}+K_{n}$. In $[4,6,7]$, it is shown that if x and y are two distinct vertices in a graph G with $N(x) \backslash y=N(v) \backslash x$, then $\operatorname{det} A(G)=-2 \operatorname{det}$ $A(G \backslash x)-\operatorname{det} A(G) \backslash\{x, y\})$. Assume that $n \geq 2$ and apply this result to the graph $K_{n}+G$. Then by mathematical induction, get

$$
\operatorname{det} A\left(K_{n}+G\right)=(-1)^{n+1}\left[n \operatorname{det} A\left(K_{1}+(j)+(n-1) \operatorname{det} A(G)\right]\right.
$$

Applying this to the graph $G=C_{m}^{\prime}$,

$$
\operatorname{det} A\left(C_{m}+K_{n}\right)=(-1)^{n+1}\left[n \operatorname{det} A\left(K_{1}+C_{m}\right)+(n-1) \operatorname{det} A\left(C_{m}\right)\right]
$$

Now, $K_{1}+C_{m}^{\prime}=W_{m}$, the wheel of order $m+1$. Therefore,

$$
\operatorname{det} A\left(C_{m}+K_{n}\right)=(-1)^{\mathrm{n}+1}\left[n \operatorname{det} A\left(W_{m}\right)+(n-1) \operatorname{det} A\left(C_{m}\right)\right]
$$

In [7], the following formulas are given:

$$
\begin{aligned}
& \operatorname{det} A\left(W_{m}\right)=\left\{\begin{array}{lll}
0, & \text { if } n \equiv 0 & (\bmod 4) ; \\
n-2, & n \equiv 1 & (\bmod 4) ; \\
2, & n \equiv 2 & (\bmod 4) ; \\
-n & n \equiv 3 & (\bmod 4)
\end{array}\right. \\
& \operatorname{det} A\left(C_{n}\right)=\left\{\begin{array}{lll}
0, & n \equiv 0 & (\bmod 4) ; \\
2, & n \equiv 1 & (\bmod 4) ; \\
-4, & n \equiv 2 & (\bmod 4) ; \\
2 & n \equiv 3 & (\bmod 4)
\end{array}\right.
\end{aligned}
$$

Therefore, the following theorem has been proved:

Theorem 5.

$$
\operatorname{det} A\left(C_{m}^{\prime}+K_{n}\right)=\left\{\begin{array}{lll}
0, & \text { if } m \equiv 0 & (\bmod 4) ; \\
(-1)^{n+1}(m n+4 n-2), & \text { if } m \equiv 1 & (\bmod 4) ; \\
(-1)^{n+1}(6 n-4), & \text { if } m \equiv 2 & (\bmod 4) ; \\
(-1)^{n+1}(-m n+2 n-2), & \text { if } m \equiv 3 & (\bmod 4)
\end{array}\right.
$$

It is easy to check, based on the above result, that if $m \neq 0(\bmod 4)$, then $\operatorname{det} A\left(C_{m}+K_{n}\right) \neq 0$. Thus, the following corollary.

Corollary. $C_{m}+K_{n}$ is singular if and only if $m \equiv 0(\bmod 4)$.

REFERENCES

Agpalza, E. P. 1991. On the determinant of the adjacency matrix of graphs. Master's Thesis. MSU-Iligan Institute of Technology.
Biggs, N. 1974. Algehraic graph theory. Cambridge University' Press.
Gervacio, S. V. 1990. Which bipartite graphs are singular? In: Proc of NAST 1990 Annual Scientific Meeting
1991. A study of singular hipartite graphs. Research project supported by NRCP.
1991. Singularity of graphs in some special classes. In: Proc. of NAST 1991 Annual Scientific Meeting.
1991. Trees with diameter less than 5 and non-singular complement. Presented at Graph Theory and Combinatorics Conference. Manila. Oct. 1991.
Rara, II. M. 1991. Singular and non-singular graphs. Ph.D. dissertation. Ateneo de Manila University.
Wilson, R. J. 1988. Singular graphs. Discrete Mathematics.

[^0]: ${ }^{1}$ This paper is part of a research project supported by the National Research Council of the Philippines, 1992-1993.

