SINGULAR GRAPHS: THE SUM OF TWO GRAPHS¹

SEVERINO V. GERVACIO

MSU-Iligan Institute of Technology Tibanga, Iligan City 9200

ABSTRACT

The sum of two graphs G and H, denoted by G + H, is the graph obtained by taking disjoint copies of G and H and then adding every edge xy, where x is a vertex in G and y is a vertex in H. The sum G + H of two graphs may be singular or non-singular, independently of the singularity or non-singularity of G and H.

Here, G and H are limited to complete graphs, paths and cycles. Formulas for det $\mathcal{A}(G+H)$ are derived and consequently, necessary and sufficient conditions for the sum to be singular are obtained.

INTRODUCTION

By graph G is meant a pair G = {V(G), E(G)}, where V(G) is a nonempty set of elements called vertices, and E(G), is a set of 2-subsets of V(G) called edges. The adjacency matrix of a graph G with vertices $v_1, v_2, ..., v_n$ is the n x n matrix $A(G) = (a_{ij})$, where $a_{ij} = 1$ if v_i and v_j are adjacent, and $a_{ij} = 0$ otherwise. The graph G is said to be singular if A(G) is singular, i.e., det A(G) = 0; otherwise, G is said to be non-singular.

The sum of two graphs G and H, denoted by G + H, is the graph obtained by taking disjoint copies of G and H and then adding every edge xy, where $x \in V(G)$ and $y \in H$.

The graph with *n* vertices where each vertex is adjacent to the remaining n-1 vertices is called the complete graph of order *n*, denoted by K_n . The *path of* order *n*, denoted by P_n , is the graph with *n* distinct vertices $x_1, x_2, ..., x_n$ and whose edges are $x_i x_{i+1}$ for i = 1, 2, ..., n-1. The cycle of length *n*, denoted by C_n is the graph obtained from the path P_n by adding the edge $x_1 x_n$.

This paper studies the sum G + H of two graphs G and H where G and H are any of the graphs K_p , P_q and C_r . Formulas for det A(G + H) are derived and singular graphs G + H are characterized.

¹This paper is part of a research project supported by the National Research Council of the Philippines, 1992-1993.

SUM OF TWO GRAPHS

Rara (1991) has computed for the determinants of G + H where G and H are any of the graphs P_n , C_n , K_n with only three exceptions, namely, $C_m + C_n$, $C_m + K_n$ and $K_m + K_n$. The last sum is trivial since $K_m + K_n = K_{m+n}$. The problem on the first two sums is settled here.

The adjacency matrix of the sum of two cycles C_m and C_n has the following form:

$$A(C_m + C_n) = \begin{bmatrix} A(C_m) & M \\ N & A(C_n) \end{bmatrix}$$

where M and N are matrices of 1s having sizes m X n and n X m, respectively. For convenience, any matrix all of whose entries are equal to c will be called a *c*-matrix.

If A is any m X n matrix, denote by R_i its *ith* row and by C_j its *jth* column. The operation of interchanging rows (columns) u and v will be denoted by $R_u \leftrightarrow R_v (C_u \leftrightarrow C_v)$. The operation of adding to R_i the linear combination of rows $c_1R_1 + c_2R_2 + ... + c_mR_m$ will be denoted by $[c_1R_1 + c_2R_2 + ... + c_mR_m] + R_i \rightarrow R_i$.

Theorem 1. If $m \equiv 0 \pmod{4}$ or $n \equiv 0 \pmod{4}$, then $C_m + C_n$ is singular.

Proof: Without loss of generality, assume that $m \equiv 0 \pmod{4}$. Let $A = A(C_m + C_n)$ be the adjacency matrix of $(C_m + C_n)$. If the row operation $[-R_2 + R_4 - \ldots - R_{n-2}] + R_n \rightarrow R_n$ to A is applied, the *nth* row is clearly reduced to a zero row. Clearly, this row operation preserves the determinant of A. Thus, $C_m + C_n$ is singular.

Lemma 1. Let *n* be odd and $A = A(C_n)$. Then A is transformed to the diagonal matrix diag(1, 1, ..., 1, 2) by the following sequence of 5 determinant-preserving operations:

(a)
$$R_1 \leftrightarrow R_2, R_2 \leftrightarrow R_3 \dots, R_{n-1} \leftrightarrow R_n$$

(b)
$$[-R_1 + R_3 + \dots + (-1)\frac{n-1}{2}R_{n-2}] + R_{n-1} \rightarrow R_n$$

(c)
$$[-R_2 + R_4 + \dots + (-1)\frac{n-1}{2}R_{n-1}] + R_n \rightarrow R_n$$

(d) $\left[-\frac{1}{2}R_{n}\right] + R_{n-1} \rightarrow R_{n-1}, \left[-\frac{1}{2}R_{n}\right] + R_{n-2} \rightarrow R_{n-2}$

(e)
$$[-R_{n-1}] + R_{n-3} \rightarrow R_{n-3}, [-R_{n-2}] + R_{n-4} \rightarrow R_{n-4}, \dots, [-R_3] + R_1 \rightarrow R_1$$

Proof. Verification is straightforward.

Lemma 2. Let J be an n x r I-matrix, where n is odd. Then the sequence of operations (a)-(e) transforms J to a matrix whose first n-1 rows form a $\frac{1}{2}$ - matrix and whose last row forms a I-matrix.

Proof. Verification is straightforward.

Lemma 3. Let $A = A(C_n)$, where $n \equiv 2 \pmod{4}$. Then A is transformed to the diagonal matrix diag(1, 1, ..., 1, 2, 2) by the following sequence of 5 operations:

- (a) $R_1 \leftrightarrow R_2, R_2 \leftrightarrow R_3 \dots, R_{n-1} \leftrightarrow R_n$
- (b) $[-R_1 + R_3 + \dots R_{n-2}] + R_{n-1} \rightarrow R_{n-1}$
- (c) $[-R_2 + R_4 + \dots R_{n-1}] + R_n \rightarrow R_n$
- (d) $\left[-\frac{1}{2}R_{n}\right] + R_{n-1} \Rightarrow R_{n-1}, \left[-\frac{1}{2}R_{n}\right] + R_{n-2} \Rightarrow R_{n-2}$
- $(e) \quad [-R_{n-1}] + R_{n-3} \to R_{n-3}, [-R_{n-2}] + R_{n-4} \to R_{n-4}, \dots, [-R_3] + R_1 \to R_1$

Moreover, the above sequence of operations reverses the sign of det A.

Proof. Verification is straightforward.

Lemma 4. Let J be an n x r I-matrix, where n is odd. Then the sequence of operations (a)-(e) transforms J to a matrix whose first n-2 rows form a $\frac{1}{2}$ – matrix and whose last two rows form a I-matrix.

Proof. Verification is straightforward.

Theorem 2. Let $m \equiv 1$ or 3 (mod 4) and $n \equiv 1$ or 3 (mod 4). Then det $A(C_m + C_m) = 4 - mn$.

Proof. By applying (a)-(e) to the first *m* rows and to the last *n* rows of $A(C_m + C_n)$, the following matrix is obtained.

where, by Lemmas 1 and 2, $l'_m = \text{diag}(1, 1, \dots, 1, 2)$, M' has $\left[\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \dots, \frac{1}{2}\right]$ in the first m - 1 rows and $\begin{bmatrix} 11 & \dots \end{bmatrix}$ in the last row, $l'_n = \text{diag}(1, 1, \dots, 1, 2)$, N' has $\left[\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \dots, \frac{1}{2}\right]$ in the first n - 1 rows and $\begin{bmatrix} 11 & \dots \end{bmatrix}$ in the last row. Multiply rows m and m + n by $\frac{1}{2}$ to get the matrix

$$A^{\prime\prime} = \begin{bmatrix} I^{\prime\prime} & M^{\prime\prime} \\ M^{\prime\prime} & I^{\prime\prime} \\ N^{\prime\prime} & I^{\prime\prime} \\ n \end{bmatrix}$$

where I_m , I_n are identity matrices and M''. N'' are matrices whose entries are all equal to $\frac{1}{2}$. If the operations $\left[-\frac{1}{2}R_1 - \frac{1}{2}R_2 - \dots - \frac{1}{2}R_m\right] + R_i \rightarrow R_i$ for $i = m + 1, m + 2, \dots, m + n$ is applied, the resulting matrix is block upper triangular and has the following form

$$A^{*} = \begin{bmatrix} l_{m} & M'' \\ O & l^{*}_{n} \end{bmatrix} = \begin{bmatrix} l_{m} & M'' \\ O & l^{*}_{n}$$

where each entry in the diagonal of I_n^* is $p = 1 - \frac{m}{4}$ and each off-diagonal element is $-\frac{m}{4}$. It follows that det $A^* = 1 - \frac{mn}{4}$ and consequently, det $A(C_m + C_n) = 4 \det A^* = 4 - mn$.

Using a similar argument and Lemmas 3 and 4, the following theorem can be established:

Theorem 3. Let $m \equiv n \equiv 2 \pmod{4}$. Then det $A(C_m + C_n) = 16 - 4 mn$.

By a similar argument and using Lemmas 1, 2, 3 and 4, the following theorem can be established:

Thereom 4. Let $m \equiv 1 \text{ or } 3 \pmod{4}$ and $n \equiv 2 \pmod{4}$. Then det $A(C_m + C_n) = 2mn - 8$.

Theorems 1-4 may be summarized as follows: The sum $C_m + C_n$ is singular if and only if C_m or C_n is singular.

Consider now the sum $C_m + K_n$. In [4, 6, 7], it is shown that if x and y are two distinct vertices in a graph G with $N(x) \setminus y = N(y) \setminus x$, then det A(G) = -2 det $A(G \setminus x) - det A(G) \setminus \{x, y\}$. Assume that $n \ge 2$ and apply this result to the graph $K_n + G$. Then by mathematical induction, get

$$\det A(K_n + G) = (-1)^{n+1} [n \det A(K_1 + G) + (n-1) \det A(G)]$$

Applying this to the graph $G = C_m$,

det
$$A(C_m + K_n) = (-1)^{n+1} [n \det A(K_1 + C_m) + (n-1) \det A(C_m)]$$

Now, $K_1 + C_m = W_m$, the wheel of order m + 1. Therefore,

$$\det A(C_m + K_n) = (-1)^{n+1} [n \det A(W_m) + (n-1) \det A(C_m)]$$

In [7], the following formulas are given:

$$\det A(W_m) = \begin{cases} 0, & \text{if } n \equiv 0 \pmod{4}; \\ n-2, & n \equiv 1 \pmod{4}; \\ 2, & n \equiv 2 \pmod{4}; \\ -n & n \equiv 3 \pmod{4}; \\ -n & n \equiv 3 \pmod{4}. \end{cases}$$
$$\det A(C_n) = \begin{cases} 0, & n \equiv 0 \pmod{4}; \\ 2, & n \equiv 1 \pmod{4}; \\ -4, & n \equiv 2 \pmod{4}; \\ 2 & n \equiv 3 \pmod{4}. \end{cases}$$

Therefore, the following theorem has been proved:

Theorem 5.

$$\det A(C_m + K_n) = \begin{cases} 0, & \text{if } m \equiv 0 \pmod{4}; \\ (-1)^{n+1} (mn + 4n - 2), & \text{if } m \equiv 1 \pmod{4}; \\ (-1)^{n+1} (6n - 4), & \text{if } m \equiv 2 \pmod{4}; \\ (-1)^{n+1} (-mn + 2n - 2), & \text{if } m \equiv 3 \pmod{4}. \end{cases}$$

It is easy to check, based on the above result, that if $m \neq 0 \pmod{4}$, then det $A(C_m + K_n) \neq 0$. Thus, the following corollary.

Corollary. $C_m + K_n$ is singular if and only if $m \equiv 0 \pmod{4}$.

REFERENCES

Agpalza, E. P. 1991. On the determinant of the adjacency matrix of graphs. Master's Thesis. MSU-Iligan Institute of Technology.

Biggs, N. 1974. Algebraic graph theory. Cambridge University Press.

Gervacio, S. V. 1990. Which bipartite graphs are singular? In: Proc. of NAST 1990 Annual Scientific Meeting

_____ 1991. A study of singular bipartite graphs. Research project supported by NRCP.

1991. Singularity of graphs in some special classes. In: Proc. of NAST Annual Scientific Meeting.

Presented at Graph Theory and Combinatorics Conference. Manila. Oct. 1991.

Rara, H. M. 1991. Singular and non-singular graphs. Ph.D. dissertation. Ateneo de Manila University.

.

Wilson, R. J. 1988. Singular graphs. Discrete Mathematics.