Geological hazards of SW Natib Volcano, site of the Bataan Nuclear Power Plant, the Philippines

A.M.F. Lagmay*, R. Rodolfo, H. Cabria, J. Soria, P. Zamora, C. Abon, C. Lit, M.R.T. Lapus, E. Paguican, M.G. Bato, E. Obille, G. Tiu, N.E. Pellejera, P. Francisco, R.N. Eco and J. Aviso

~33 km

Natib Volcano

BNPP

~25 km Mariveles Volcano

Knowledge

- Much of scientific understanding of volcanism was learned only in the past 35 years.
 - Eruption columns
 - Pyroclastic
 Density currents

St. Pierre after the 8 May 1902 disaster

Geological Society, London, Special Publications

Geological hazards of SW Natib Volcano, site of the Bataan Nuclear Power Plant, the Philippines

A. M. F. Lagmay, R. Rodolfo, H. Cabria, et al.

Geological Society, London, Special Publications 2012; v. 361; p. 151-169 doi: 10.1144/SP361.13

Email alerting service	click here to receive free e-mail alerts when new articles cite this article
Permission request	click here to seek permission to re-use all or part of this article
Subscribe	click here to subscribe to Geological Society, London, Special Publications or the Lyell Collection

Notes

Volcanic and Tectonic Hazard Assessment for Nuclear Facilities

CAMBRIDGE

IAEA Safety Standards

for protecting people and the environment

Description

© Rights and permissions

IAEA TECDOC SERIES

IAEA-TECDOC-1795

Volcanic Hazard Assessments for Nuclear Installations: Methods and Examples in Site Evaluation

Released in October 2016

Mt. Pina	27,000 yrs. based on carbon age dating (Newhall, personal communication – from Volentik, 2009)
Mt. Negr	11,300 yrs – 18,000 yrs (Cabato et. al)
Mt. Bal	4,060 years Mariveles Volcano (Siebert and Simkin, 2007)
opine Sea nina Sea)	Geothermal activity 13 hot springs Indication of an active hydrothermal system in
dar It	sampled hot springs (Ruaya, 1991)
den ver	Cavite

Riza

agu**i**la de

ay

aur

A capable volcano or volcanic field is one that:

(i) has a credible likelihood of experiencing future activity during the lifetime of the installation

(ii) has the potential to produce phenomena that may affect the site of the installation. The designation of a volcano as capable is not dependent only on the time elapsed since the most recent eruption of the volcano, but rather is dependent on the credibility of the occurrence What probability constitutes serious radiological consequences

In some States a value for the annual probability of 10⁻⁷ is used in the hazard assessment for external events as a reasonable basis to evaluate whether a volcano in the region could produce any type of activity in the future that could lead to serious radiological consequences(IAEA 2012).

Potential sources of future volcanic activity

- Evidence of current volcanic activity includes historical volcanic eruptions, ongoing volcanic unrest, an active hydrothermal system (e.g. the presence of fumaroles) and related phenomena.
- Evidence of an eruption in the past 2 Ma generally indicates that future volcanic activity remains possible

Potentially active

C i www.phivolcs.dost.gov.ph/html/update_VMEPD/Volcano/VolcanoList/natib.htm

Name of Volcano: NATIB

Classification: Potentially Active Lat (deg-min) 14°43' Long (deg-min) 120°24' Province Bataan Region III Nearby Cities/Towns Olongapo, Morong, Bagac, Pilar, Balanga, Abucay, Samal, Orani, Hermosa, Dinalupihan Topo Sheets 3064 II, 3063 I

Natib Volcano

- 27,000 years (Newhall)
- 11,000 years (Cabato et al.)
- Active Hydrothermal activity

Dearth of information on eruptive activity but enough information to consider to proceed to stage 3

Mariveles Volcano

• 5000 years (Siebert and Simke, 2002)

Modern Pinatubo eruptions

- ~33,000 BC
- ~15,000 BC (Sacobia Eruptive Period)
- ~7000 BC (Pasbul Eruptive Period). Its eruptions were as energetic, if not as voluminous as the Inararo eruptions.
- ~4000–3000 BC (Crow Valley Eruptive Period). This and the Maraunot period's eruptions were smaller than the Inararo eruption but about 2 to 3 times as big as that of 1991 based on the pyroclastic flow runout distances and depths of valley filling.
- ~1900–300 BC (Maraunot Eruptive Period)
- ~AD 1500 (Buag Eruptive Period). Its eruptions were roughly the same size as those of 1991.
- 1990 eruption

Updated Geological Map of Southwest Mount Natib

Volcanic deposits

......

Sandstone-siltstone

2.5X vertical exaggeration

Hazards

- Lava flows
- Pyroclastic flows at least 5 pyroclastic flow deposits
- Pyroclastic surge
- Lahars

The probability of a future Natib eruption was calculated by Ebasco (1977) at **3 x 10⁵ year-**¹ and to be an order of magnitude greater by Volentik et al. (2009) at **1 x 10⁻⁴ – 2 x 10⁻⁴ year**⁻¹, with a confidence level of 95%. These probabilities, together with Natib's active volcanic hydrothermal system (Ruaya & Panem 1991), means that Natib has credible potential for future eruption. Volentik et al. (2009) estimated an even higher probability for a VEI (Volcanic Explosivity Index) 6 - 7 eruption of Mariveles Volcano: $3.5 \times 10^{-4} - 6 \times 10^{-4}$ year⁻¹, with a 95%

confidence level.

TABLE 1. VOLCANIC PHENOMENA AND ASSOCIATED CHARACTERISTICS THAT COULD AFFECT NUCLEAR INSTALLATIONS, WITH IMPLICATIONS FOR SITE SELECTION AND EVALUATION AND DESIGN

Phenomena		Potentially adverse characteristics for nuclear installations	Considered an exclusion condition at site selection stage?	Can effects be mitigated by measures for design ² and operation?	
1.	Tephra fallout	Static physical loads, abrasive and corrosive particles in air and water	No	Yes	
2.	Pyroclastic density currents: pyroclastic flows, surges and blasts	Dynamic physical loads, atmospheric overpressures, projectile impacts, temperatures >300°C, abrasive particles, toxic gases	Yes	No	
3.	Lava flows	Dynamic physical loads, floods and water impoundments, temperatures >700°C	Yes	No	
4.	Debris avalanches, landslides and slope failures	Dynamic physical loads, atmospheric overpressures, projectile impacts, water impoundments and floods	Yes	No	
5.	Volcanic debris flows, lahars and floods	Dynamic physical loads, water impoundments and floods, suspended particulates in water	Yes	Yes	
6.	Opening of new vents	Dynamic physical loads, ground deformation, volcanic earthquakes	Yes	No	
7.	Volcano generated missiles	Particle impacts, static physical loads, abrasive particles in water	Yes	Yes	
8.	Volcanic gases and aerosols	Toxic and corrosive gases, acid rain, gas charged lakes, water contamination	No	Yes	

Pyroclastic Density Current

Considered as an exclusion condition at site selection stage? YES
Can effects be mitigated by measures for design and operation? NO

Lava Flows

- Considered as an exclusion condition at site selection stage? YES
- Can effects be mitigated by measures for design and operation? NO

Lubao fault

Soria (2009) formally named it the Lubao Lineament after the municipality where it is best expressed and argued that despite high sedimentation due to the Holocene eruptions of Mt Pinatubo, the wetland–dryland boundary has been maintained because it is an active fault.

Soria (2009) estimated that vertical components of motion at the lineament have dropped the southeastern block by as much as 3.5 m over the past 1.5 ka, based on palaeosea-level reconstructions from a peat layer taken in Lubao.

Distance (km)

Geothermal Energy

Source: Youtube

Renewable Energy

• Renewable Energy Act (2008)

 - "Accelerate the exploration and development of renewable energy resources such as, but not limited to, biomass, solar, wind, hydro, geothermal and ocean energy sources, including hybrid systems, to achieve energy self-reliance ..."

Renewable Energy

• Climate Change Act (2009)

– "It shall also be the policy of the State to incorporate a gender-sensitive, pro-children and pro-poor perspective in all climate change and renewable energy efforts"

Global Geothermal Energy Production (MW)

The Philippines is the 2ND largest geothermal producer in the world next to the US

Source: Bertani 2015 Source: Bertani 2015

Operating Geothermal Projects

	Project Name / Area	Province	Installed Capacity (MW)	Concession Holder
Luzon				
	MakBan	Laguna/Batangas	458	PGPC / AP
	Tiwi	Albay	234	PGPC / AP
	Maibarara	Laguna/Batangas	20	Maibarara Geothermal Inc
	BacMan	Sorsogon	130	EDC
Visayas				
	Tongonan	Leyte	701	EDC
	Palinpinon	Negros Oriental	221	EDC
Mindanao	Mindanao (Mt. Apo)	North Cotabato	108	EDC
TOTAL			1,872	

THERE ARE EXPANSION POTENTIALS WITHIN THE EXISTING FIELDS BUT WERE NOT YET DEVELOPED PRIMARILY DUE TO NON-COMPETITIVE ECONOMICS

Brownfield Geothermal Projects

	Project Name / Area	Province	Potential Capacity (MW)	Concession Holder	Remarks
Luzon	Bacman - Bacman 3 (Expansion) - Manito Lowlands (Binary) Maibarara	Sorsogon 8(Laguna/B:	30) (EDC ANNA ermal Inc	Steam available. Project development on- hold due to unfavorable economics Three wells drilled. Needs further drilling prior to development Planning stage
Mindanao	Mt. Apo 3	North Cotabato	20	EDC	Acidic resource requiring use of more expensive acid-resistant alloys
TOTAL			80		

GEOTHERMAL EXPLORATION IN LUZON WERE FACED MOSTLY WITH TECHNICAL CHALLENGES, WHILE SOME SITES HAVE SOCIAL AND SECURITY ISSUES

	Prospect Name / Area	Province	Estimated Capacity (MW)	Concession Holder	REMARKS
Luzon	Kalinga	Kalinga Province	60-100	Chevron Philippines Inc	Surface exploration not completed yet. Issues with IPRA, security, community acceptance
	Cagua-Baua	Cagayan	25-40	Pan Pacific Power Philippines	2 deep exploration well drilled. Poor permeability. Acid fluids
	Sal-Lapadan-Boliney- Bucloc-Tubo	Abra			For further surface exploration
	Cervantes	llocos Sur/Mt Province/Benguet	-		For further surface exploration
	Mainit-Sadanga	Mt			with permeability, community, IPRA
	Bugias-Tinoc	Ifug			ther surface exploration
	Daklan)/ N/N/	drilled. Poor permeability. Issues with ecurity
	Natib	Bat 40	-42		wells drilled. Poor permeability. park
	East Mankayan	Ifug			ther surface exploration
	Mariveles	Bataan	-	Desis Energy Componition	For rurther surface exploration
	Mabini	Batangas		Basic Energy Corporation	
	Isarog Iriga	Albay/Sorsogon	-		For further surface exploration
	San Juan	Batangas	20	SKI Construction Group, Inc	For further surface exploration
	Tiaong	Laguna/Quezon/Batangas	-		For further surface exploration
	Tayabas-Lucban	Tayabas/Quezon			For further surface exploration
	Bulusan	Sorsogon			within Active volcano area
	Montelago	Oriental Mindoro	40	Constellation Energy Corp	two deep exploration wells drilled. Under evaluation for binary plant
	Mt. Labo	Quezon/Camarines Norte & Sur	54	-	Acid fluids
	Negron-Cuadrado	Zambales/Pampanga	-	AP Renewables Corp	For further surface exploration
TOTAL			143-494		

FURTHER EXPLORATION IN THE VISAYAS ARE FACED WITH TECHNICAL ISSUES THAT MAKES PROJECTS UNECONOMICAL WITH CURRENT TARIFF

	Prospect Name / Area	Province	Estimated Capacity (MW)	Concession Holder	REMARKS
Visayas	Mandalagan	Negros Occidental			Within national park. For further surface exploration
	Dauin	Negros Oriental	20-40		2 wells drilled. Poor permeability
	Alto Peak Mahagnao	70-	208	3 MW	wells drilled. Acid fluids. Development ill require acid resistant alloys wells drilled. Poor permeability, possible binary
	Biliran	Biliran	50-94	Billiran Geothermal Inc	8 wells drilled. Acid fluids
	Cabalian	Southern Leyte	34		3 wells drilled. Poor permeability
TOTAL		1	70-208		

THE CHALLENGE OF EXPLORATION IN MINDANAO ARE MOSTLY ON SECURITY, PARK AND SOCIAL ISSUES, WITH SOME TECHNICAL HURDLES

	Prospect Name / Area	Province	Estimated Capacity (MW)	Concession Holder	REMARKS
Mindanao	Mainit	Surigao del Norte	30	-	Low temperature, possible binary development
	Balingasag	Misamis Oriental	20		Issues with security
	Ampiro	Misamis Occidental	30		Issues with low permeability, IPRA, natural park, security
	Lakewood Zion	× 60-	270	MW	Low temperature, issues with IPRA, security, possible binary development Within National Park, For further
	Lakewood Zion Amacan	Za N 60– Compostela Valley	40-100	MW	Low temperature, issues with IPRA, security, possible binary development Within National Park, For further surface exploration 1 well drilled. Low Permeability. Issues with IPRA, security. For further surface exploration
	Lakewood Zion Amacan Talomo-Tico	Za N 60– Compostela Valley North Cotabato	40-100	AP Renewables Corp	Low temperature, issues with IPRA, security, possible binary development Within National Park, For further surface exploration 1 well drilled. Low Permeability. Issues with IPRA, security. For further surface exploration

IN SUMMARY, THERE IS GROWTH IN THE GEOTHERMAL INDUSTRY IN THE COUNTRY BUT NEEDS FAVORABLE SUPPORT TO ADDRESS TECHNICAL AND NON-TECHNICAL ISSUES

SUMMARY	
TOTAL INSTALLED CAPACITY	1872 MW
TOTAL ADDITIONAL BROWNFIELD GEOTHERMAL POTENTIAL	80 MW
TOTAL ADDITIONAL GREENFIELD GEOTHERMAL POTENTIAL	273-972 MW

Advantages of Geothermal Energy to support industrialization

- We have the expertise in Geothermal
- We are rich in geothermal resources
- Disaster risk is very low
- Clean and renewable energy
- Energy source from all parts of the Philippines (Luzon, Visayas, Mindanao)
- Potential of up to 1000+ MW
- Base load

Thank you for listening

-10 -15 -20 -25

в

Twenty-one time-series images from 19 March 2003 to 8 March 2006

Faults

BNPP-A-3

BNPP-A-1 BNFP-A-2

ENPP-A-4

BNPP-A-5

BNPP-A-6 BNPP-A-7

BNPP-A-9 @ BNPP-A-8

BHPP-A-10

BNPP-A-11

BNPP-A-14 ENPP-A-16

BNPP-A-12 BNPP-A-12

Radon – Marikina Fault

BNPP-A-3

BNPP-A-1 BNFP-A-2

ENPP-A-4

BNPP-A-5

BNPP-A-6 BNPP-A-7

BNPP-A-9 @ BNPP-A-8

BHPP-A-10

BNPP-A-11

BNPP-A-14 ENPP-A-16

BNPP-A-12 BNPP-A-12

N25-30E Surge

Capable volcano:

(1) may experience volcanic activity during the performance period of the nuclear installation;

(2) such an event has the potential to produce phenomena that may affect the site of the nuclear installation (IAEA 2009).

Capability

- Age dates
 - 27,000 yrs. based on carbon age dating (Newhall, personal communication from Volentik, 2009)
 - 11,000 yrs
 - 4,060 years Mariveles Volcano (Siebert and Simkin, 2007)
- Geothermal activity
 - 13 hot springs
 - Indication of an active hydrothermal in sampled hot springs (Volentik citing Ruaya, 1991)

Annual probabilities of an eruption of Natib

- Ebasco (1977) at 3 X10⁻⁵ year⁻¹
- Volentik et al. (2009) at 1 X 10⁻⁴–2 X 10⁻⁴ year⁻¹, with a confidence level of 95%

+ Active hydrothermal system means it has credible potential for a future eruption

What probability constitutes serious radiological consequences

In some States a value for the annual probability of 10⁻⁷ is used in the hazard assessment for external events as a reasonable basis to evaluate whether a volcano in the region could produce any type of activity in the future that could lead to serious radiological consequences(IAEA 2009).

Screening distance values

the maximum distance from the source to the site at which each phenomenon could be a hazard

- Pyroclastic flow hazard within SDV
- Pyroclastic surge hazard within SDV
- Lahar hazard within SDV
- Lava flow hazard within SDV (nearest eruptive center 5 km away from the Nuclear reactor)

Phenomena	Potentially adverse characteristics for nuclear installations	Site selection	Design/ operation
Fephra fall	Static physical loads, abrasive and corrosive particles in air and water	No	Yes
Pyroclastic density currents: Pyroclastic flows, surges and blasts	Dynamic physical loads, atmospheric overpressures, projectile impacts, temperatures >300 °C, abrasive particles, toxic gases	Yes	No
Lava flows and lava domes	Dynamic physical loads, water impoundments and floods, temperatures $>700 ^{\circ}C$	Yes	No
Debris avalanches, landslides and slope failures	Dynamic physical loads, atmospheric overpressures, projectile impacts, water impoundments and floods	Yes	No
Debris flows and lahars, floods	Dynamic physical loads, water impoundments and floods, suspended particulates in water	Yes	Yes
Opening of new vents	Dynamic physical loads, ground deformation, volcanic earthquakes	Yes	No
Ballistic projectiles	Projectile impacts, static physical loads, abrasive particles in water	No	Yes
Volcanic gases and aerosols	Toxic and corrosive gases, water contamination, gas-charged lakes	No	Yes
Isunamis, seiches, crater lake failure, glacial burst	Water inundation	Yes	Yes
Atmospheric phenomena	Dynamic overpressures, lightning strikes, downburst winds	No	Yes
Ground deformation	Ground displacements >1 m, landslides	Yes	No
Volcanic earthquakes and seismic events	Continuous tremor, multiple shocks usually $< M 5$	No	Yes
Hydrothermal systems and groundwater anomalies	Thermal water >50 °C, corrosive water, water contamination, water inundation or upwelling, alteration, landslides	Yes	No

Capable faults are structures that are most relevant when evaluating the geological features of the site. They are faults that have a significant potential for relative displacement at or near the ground surface

Criteria

1.Shows evidence of past movement of a recurring nature within a period that it is reasonable to conclude that further movements at or near the surface may occur. In tectonically active areas, where both earthquake data and geological data consistently reveal short earthquake recurrence intervals, periods of the order of tens of thousands of years may be appropriate. Capable faults are structures that are most relevant when evaluating the geological features of the site. They are faults that have a significant potential for relative displacement at or near the ground surface

Criteria:

2.A structural relationship with another known capable fault has been demonstrated, such that movement at one may cause movement of the other at or near the surface.

Conclusions – site not suitable

- Pyroclastic flow hazard within SDV
- Pyroclastic surge hazard within SDV
- Lahar hazard within SDV
- Lava flow hazard within SDV (nearest eruptive center 5 km away from the Nuclear reactor)
- Seismic hazard seismically active area with the nearest identified fault 400 m away from the Nuclear reactor