Microalgae as a Platform for CO₂ Capture and Utilization

University Fellow and Professor of Mechanical Engineering De La Salle University

Academician The National Academy of Science and Technology

BSME Graduate ME License

Career Milestones

University of the Philippines

Asian Institute of Technology

De La Salle University

Tokyo Institute of Technology (JSPS Exchange Scientist)

21 years old)

University of Portsmouth, UK (World Bank-DOST Scholar)

90

996 Earned Ph.D. in Mechanical Engineering; ME Chair at DLSU

University of Sussex, UK Harvard University Science & Technology International Affairs Consultant to the PHINMA Group of Companies

Consultant to 150 companies in the Philippines

 $\mathbf{Q}\mathbf{Q}$

President, Philippine-American Academy of Science & Engineering

Academician, National Academy of Science and Technology Philippine Energy Adviser Who's Who in Philippine Engineering President, National Re

President, National Research Council of the Philippines

2001

NRCP Lifetime Achievement Award

DOST Outstanding Science Administrator Award CHED Oustanding HEI Research Award Metrobank Outstanding Teacher Award NAST Dioscoro L. Umali Medal

G Florida State University, USA; began algae work

2011 Executive Vice President of DLSU

Board Member

016Research productivity: h-index 16

National Scientist

Phil Electricity Market Corporation Establishment of the Algae BioInnovation Global Hub

Major Energy Issues Global Warming, Pollution, Energy Security

The Future of Humanity is at Risk

Source: Nobel Laureate Y.T. Lee at 81st Annual Meeting of the NRCP

Transformations towards **Sustainability** Transformation

mega-cities economy development options Innovation and ideas trade-offs

emerging technology

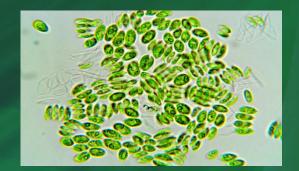
decision making

assessment of policies Global and regional

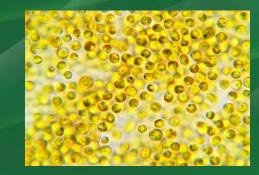
process

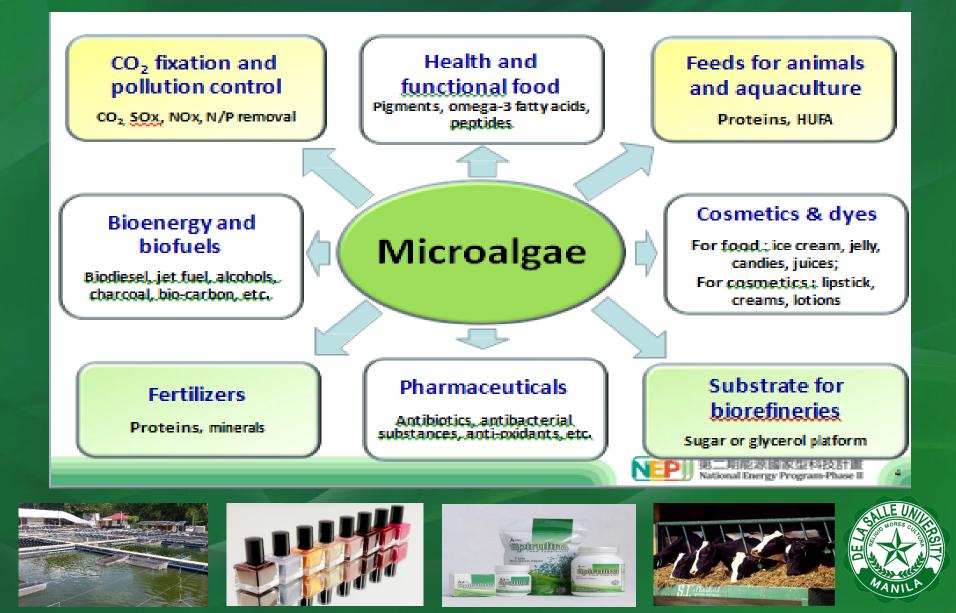
governance international law

incentives


regional enforcement

Source: Nobel Laureate Y.T. Lee at 81st Annual Meeting of the NRCP


How can we capture and use the



Opportunities for Microalgae Use

Why Algae?

Omega 3 Oils Market Worth \$4.3B by 2019

Astaxanthin Market Valued at over **\$1B** by 2020

Global Bioproducts Market to Reach over **\$700B** by 2018

Non-Energetics Bioproducts Market to Reach **\$236B** by 2018

-- BCC Research

Adapted from the public lecture of Prof. Joel L. Cuello, PhD entitled *Building an Algae BioInnovation Global Hub* under the USAID STRIDE Innovation Series: Innovation Challenges in Growing the Algae Technology in the Philippines. DLSU-STC. January 2016

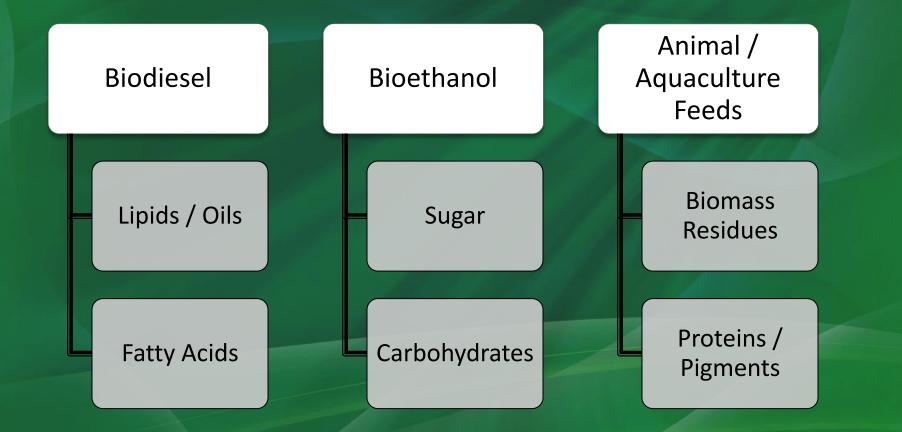
Why Microalgae?

Microalgae as Biomass Resource

- Exceptional growth characteristics
- Less nutrient input and land area requirement
- Minimum competition to productive land
- Wastewater treatment potential
- Carbon sequestration capability
- Size range: few to few hundred micrometers; length of 300-1,000 microns

Microalgae Biomass

CO₂ O O O O O Microalgae


Oxygen Carbohydrates Oils Proteins Pigments

Nutrients

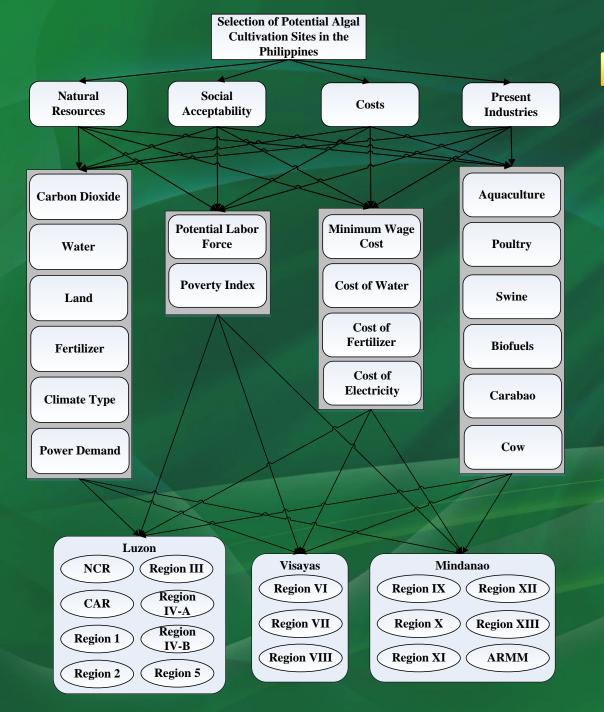
Sunlight

Microalgae Biomass

Gross Chemical Composition of Human Food Sources and Some Microalgae Strains

Commodity/	Protein	Carbohydrates	Lipids	Nucleic Acid
Microalgae Species	FIOLEIII	Carbonyurates	Lipius	Nucleic Acia
Baker's Yeast	39	38	1	
Meat	43	1	34	
Milk	26	38	28	
Rice	8	77	2	
Soybean	37	30	20	
Scenedesmus obliquus	50-56	10-17	12-14	3-6
Scenedesmus quadricauda	47		1.9	
Scenedesmus dimorphus	8-18	21-52	16-40	
Chlamydomonas rheinhardii	48	17	21	
Chlorella vulgaris	51-58	12-17	14-22	4-5
Chlorella pyrenoidosa	57	26	2	-
Spirogyra sp.	6-20	33-64	11-21	
Dunaliella bioculata	49	4	8	
Dunaliella salina	57	32	6	
Euglena gracilis	39-61	14-18	14-20	
Prymnesium parvum	28-45	25-33	22-38	1-2
Tetraselmis maculata	52	15	3	- /
Porphyridium cruentum	28-39	40-57	9-14	
Spirulina platensis	46-63	8-14	4-9	2-5
Spirulina maxima	60-71	13-16	6-7	3-4.5
Synechoccus sp.	63	15	11	
Anabaena cylindrica	43-56	25-30	4-7	

Based on a % Dry Matter Basis Source: Becker (2008)

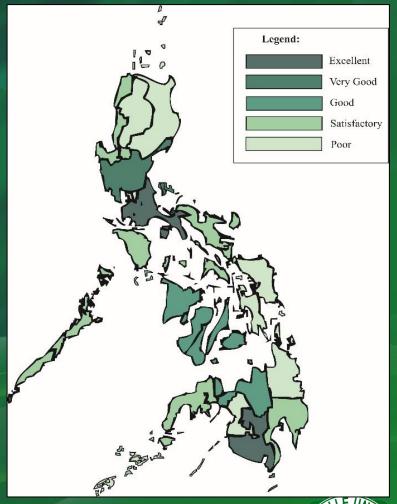

Prospects in the Philippines

The Philippines Constitutes the Geographical Epicenter of Tropical Algae Diversity

Adapted from the public lecture of Prof. Joel L. Cuello, PhD entitled *Building an Algae BioInnovation Global Hub* under the USAID STRIDE Innovation Series: Innovation Challenges in Growing the Algae Technology in the Philippines. DLSU-STC. January 2016

Common Microalgae Strains

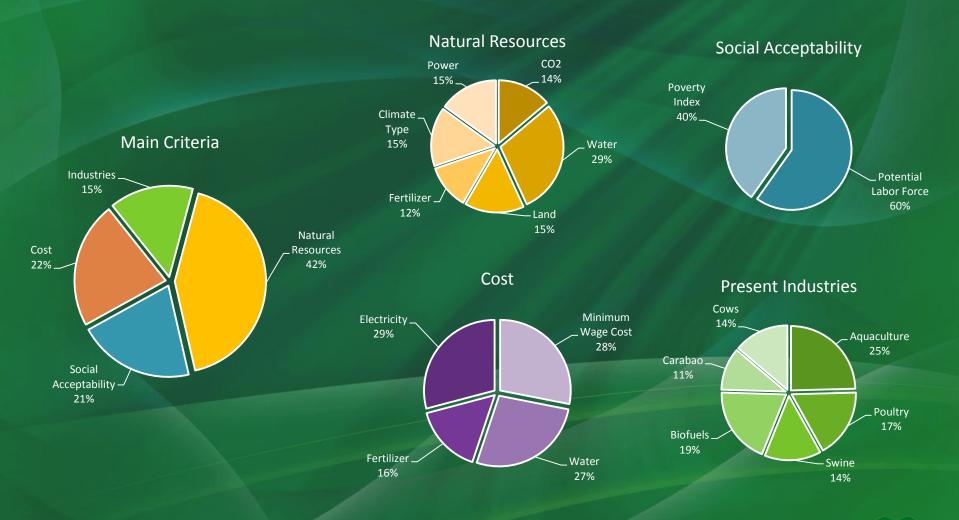
Deployment of a Microalgae Industry in the Philippines


Multi-Criteria Decision Analysis model in the evaluation of the most suitable cultivation sites in the Philippines

Ubando et al, 2015

Deployment of a Microalgae Industry in the Philippines

Ranking	Region	Weight, %
1	Region IV-A	11.47
2	Region III	9.22
3	Region X	8.73
4	Region VI	8.09
5	Region XII	6.39
6	Region VII	6.30
7	Region I	6.14
8	Region XI	6.04
9	Region IV-B	5.58
10	Region IX	5.37
11	Region V	5.31
12	Region II	5.17
13	ARMM	4.70
14	Region VIII	4.64
15	CAR	3.49
16	Region XIII	3.36



Deployment of a Microalgae Industry in the Philippines

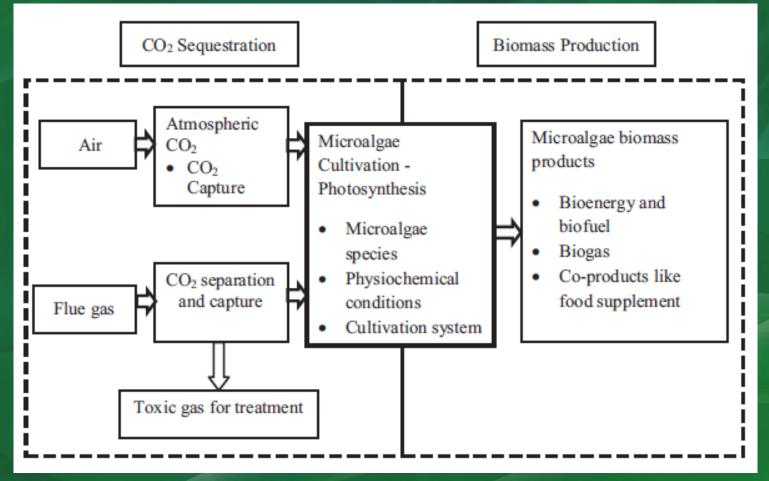
Main Criteria	Sub-criteria	Regional Data type	Units
	Carbon Dioxide	CO2 source	Кд
	Water	Water resources potential	МСМ
	Land	Idle land capacity	Sq Km
Natural Resources	Fertilizer	Fertilizer use per region	50kg bags
	Climate Type	Climate projections	Normalized
	Power Demand	Fuel demand per region (mboe)	Million Barrels
Social Acceptability	Potential labor force	Labor force capacity per region	In Thousands
	Poverty index	Poverty incidence among families	%
	Minimum Wage	Cost per day per region	Php per day
	Cost of Water	Cost of water per region per day	Php per cu m
Costs	Cost of Fertilizer	Cost of inorganic fertilizer per 50 kg	Php per 50kg
	Cost of Electricity	Cost of electricity per kWh per region	Php per kWh
	Aquaculture	Mt of aquaculture production per region	mtons
Present Industries	Poultry, Swine, Carabao and Cow	Animal production	heads
	Biofuels	Capacities of existing biodiesel plants	Mli

Deployment of a Microalgae Industry in the Philippines

Comparison of Biofuel Feedstock Sources

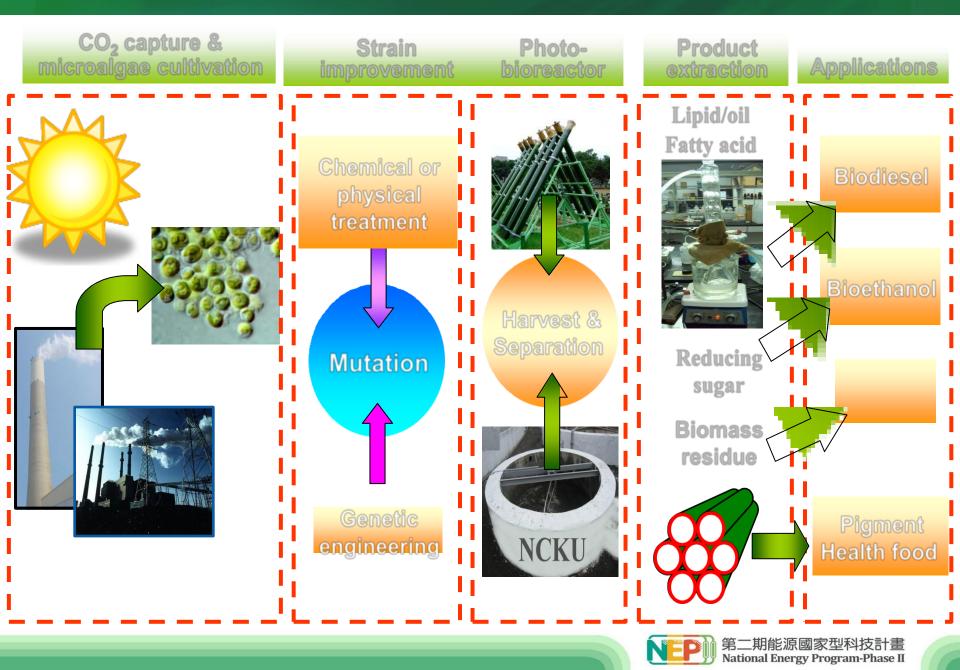
Crop or Plant Source	Oil Yield (L/ha year)	Land Use (m² year/kg biodiesel)	Biodiesel Productivity (kg biodiesel/ha year)
Corn	172	66	152
Hemp	363	31	321
Soybean	636	18	562
Jatropa	741	15	656
Camelina	915	12	809
Canola/Rapeseed	974	12	862
Sunflower	1070	11	946
Castor	1307	9	1156
Palm Oil	5366	2	4747
Microalgae (low oil)	58,700	0.2	51,927
Microalgae (med oil)	97,800	0.1	86,515
Microalgae (high oil)	136, 900	0.1	121,104

Source: Chisti, 2007; Mata et al., 2010


Lipid Content and Productivities of Different Microalgae Species

Marine and freshwater microalgae	Lipid content	Lipid productivity	Volumetric productivity of	
species	(% dry weight biomass)	(mg/L/day)	biomass (g/L/day)	
Botryococcusbraunii	25.0-75.0	and the second second	0.02	
Chaetocerosmuelleri	33.6	21.8	0.07	
Chaetoceroscalcitrans	14.6-16.4	17.6	0.04	
Chlorella vulgaris	5.0-58.0	11.2-40.0	0.02-0.20	
Chlorella sp.	10.0-48.0	42.1	0.02-2.5	
Chlorella	18.0-57.0	18.7		
Dunaliellasalina	6.0-25.0	116.0	0.22-0.34	
Dunaliellaprimolecta	23.1		0.09	
Dunaliella sp.	17.5-67.0	33.5		
Haematococcuspluvialis	25.0		0.05-0.06	
Nannochloris sp.	20.0-56.0	60.9-76.5	0.17-0.51	
Nannochloropsisoculata	22.7-29.7	84.0-142.0	0.37-0.48	
Nannochloropsis sp.	12.0-53.0	37.6-90.0	0.17-1.43	
Scenedesmus obliquus	11.0-55.0	-	0.004-0.74	
Scenedesmusquadricauda	1.9-18.4	35.1	0.19	
Scenedesmus sp.	19.6-21.1	40.8-53.9	0.03-0.26	
Spirulina platensis	4.0-16.6		0.06-4.3	
Spirulina maxima	4.0-9.0		0.21-0.25	
Tetraselmissuecica	8.5-23.0	27.0-36.4	0.12-0.32	
Tetraselmis sp.	12.6-14.7	43.4	0.30	

Source: Mata et al., 2010


Microalgal-CO2 Sequestration and Biomass Production

Source: Cheah et al, 2015

An Integrated Microalgae Technology for CO2 capture / Utilization

Microalgae for CO₂ Capture/Utilization

Cultivation

- Nutrient medium
- Sunlight or other light source
- CO₂ from flue gases and power plants
- Photobioreactor or Open Ponds

Strain Improvement

- Chemical or Physical treatment
- Genetic Engineering

Harvest and Separation

- Centrifugation
- Oil Extraction

Carbon from Flue Gases

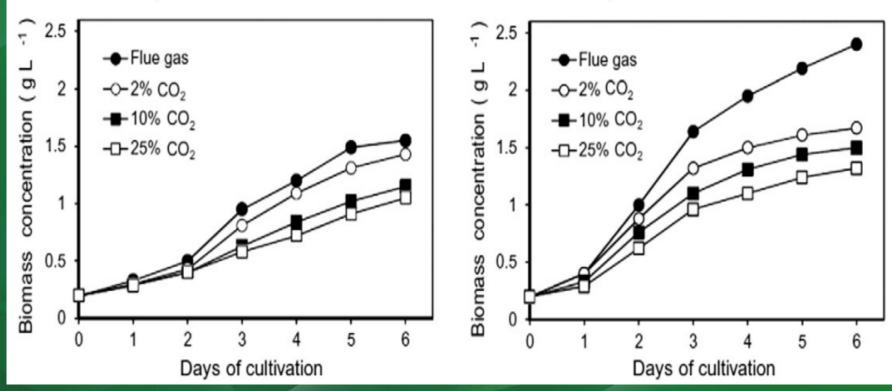
Fossil Fuel Power Stations

Cement Processing

Automotive Industry

- Microalgae can grow on varieties of flue gas types.
- CO₂ reduction capacity is 300-500 ton CO₂/ha/yr with a removal efficiency of 60-70% (Taiwan NEP II)
- Flue gas impurities such as NO_x and SO_x can be simultaneous removed as well

Carbon Sequestration: How it works



Source: http://reveal.uky.edu/algae_part1_howitworks

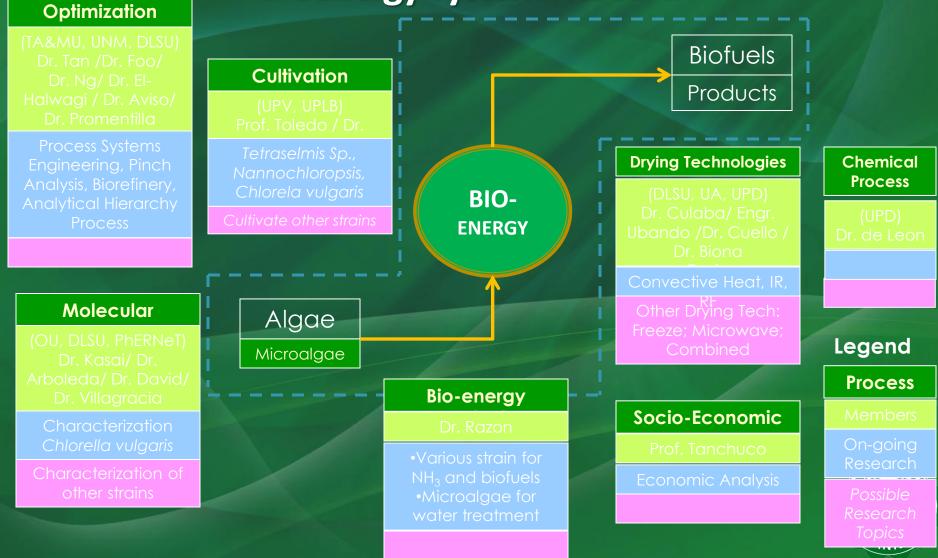
Microalgae Growth using Different Flue Gases

B. Chlorella sp. MTF-7

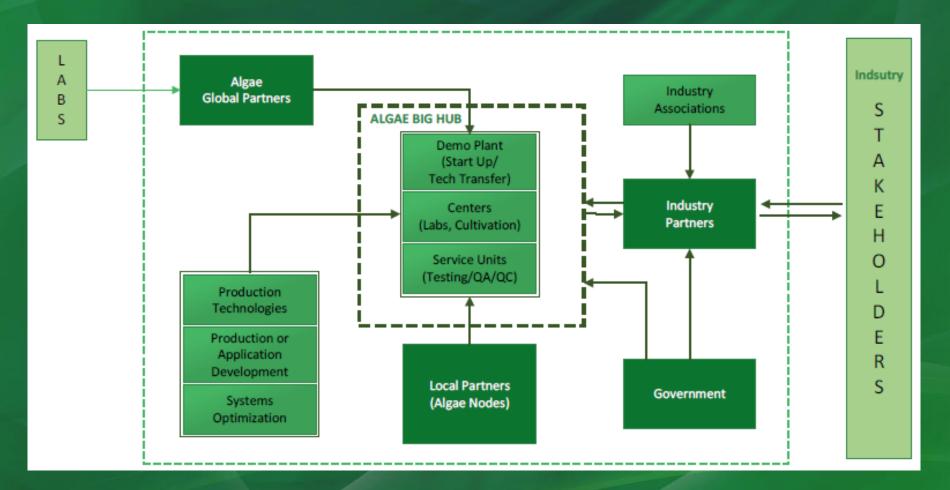
A. Chlorella sp. WT

Source: Raeesossadati et al, 2014

Performance of Microalgae-based CO2 Fixation


- CO₂ reducton capacity is ca. 300-500 ton CO₂/ha/year
- CO₂ removal percentage = f (flow rate, CO₂ concentration, photobioreactor type), can get up to 60-70% removal efficiency
- Microalgae can grow on varieties of flue gas types
- Flue gas impurities (NO_x and SO_x) can be simultaneously removed (up to 70-90%)

The obtained microalgal biomass (150-250 ton biomass/ha/year) has been utilized to produce biofuels (biodiesel, bioalchols, charcoal, etc.) and also other value-added products



Research@DLSU: Life Cycle-based Multifunctional Bioenergy System Research

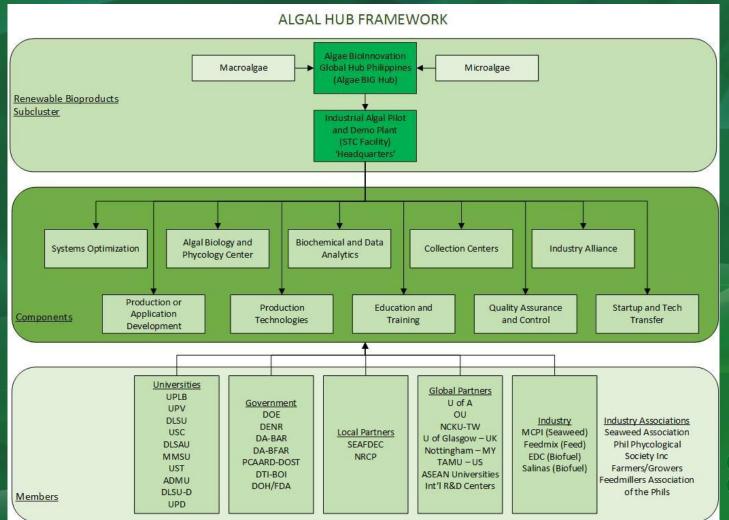
Algae S&T Innovation Ecosystem

Establishment of the Algae BIG Hub

Name

• Algae BioInnovation Global Hub Philippines (A BIG Hub – PH)

Headquarters


 De La Salle University Science and Technology Complex (DLSU-STC), Biñan Laguna

Mission-Vision

 To serve as the regional hub for algae-based resources, knowledge, technologies and multidisciplinary expertise for the purpose of creating and designing algae-based innovations for food, feed, nutraceuticals, biofuels and all types of products for translation into the marketplace

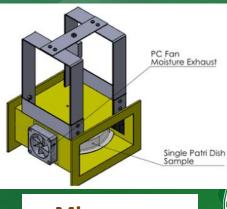
Function of the Hub To provide scientific knowledge to anyone who are interested in algae research & development

Open Pond / Closed Photobioreactor

Open Pond Cultivation System of AZtec Spirulina in Cainta

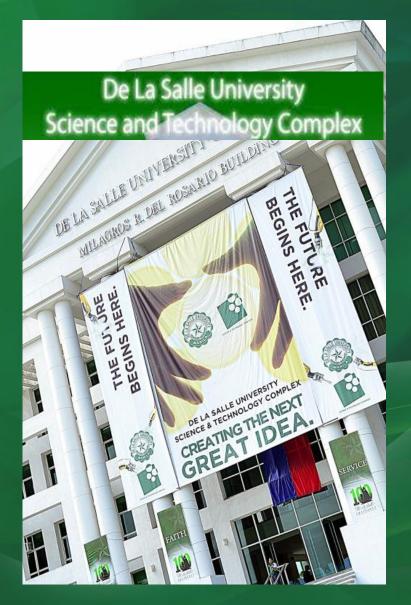
Microalgae Dewatering (for Biofuels Production)

Drying



Convective (Doblada, 2014)

Infrared (Tono et al., 2013)


Molecular

Dynamics (Manrique, 2013)

Microwave (Mayol et al, 2014)

The Algae BIG Hub@DLSUSTC

The Clean Building

CIENCE & TECHNOLOGY COMPLE

Conclusions

- Microalgae can be used to capture CO₂ for greenhouse gas mitigation.
- Incorporating flue gases and wastewaters for microalgal cultivation makes production more environmentally sustainable.
- Microalgae biomass contain numerous functional chemical components which can be processed into high-value products.
- There is a high potential in investing on microalgal biorefineries in the Philippines.

References Cited

- Becker, E. (2008). Microalgae Biotechnology and Microbiology. Cambridge: Cambridge University Press.
- Cheah, W. Y., Show, P. L., Chang, J., Ling, T. C., & Juan, J. C. (2015). Biosequestration of atmospheric CO₂ and flue gascontaining CO₂ by microalgae. *Bioresource Technology* 184, 190-201
- Chisti, Y. (2007). Biodiesel from Microalgae. *Biotechnology* Advances, 294-306.
- Mata, T. M., Martins, A. A., & Caetano, N. S. (2010). Microalgae for Biodiesel Production and Other Applications: A Review. *Renewable and Sustainable Energy Reviews*, 217-232.
- Raeesossadati, M. J., Ahmadzadeh, H., McHenry, M. P., & Moheimani, N. R. (2014). CO₂ bioremediation by microalgae in photobioreactors: Impacts of biomass and CO₂ concentration light and temperature. *Algal Research* 6, 78-85.

Acknowledgements Collaborators Dr. Jo-Shu Chang Professor of Chemical Engineering 2 National Cheng Kung University, Taiwan Dr. Joel Cuello **Professor of Bioenergy Systems** Collaborator, University of Arizona, USA THANK YOU

