
Relative Contributions of Mixed 
Variables to the Variation 
of a Regressand 

By Jose Encarnacion, Ph. D., Academician 

Consider a regression equation whose regressors include clas­
sificatory as well as ordinary scalar variables. A classificatory 
variable is essentially a vector that has as many components as 
there are different (mutually exclusive and exhaustive) catego­
ries in the classification. For example, one might estimate a re­
gression equation that explains employees' salaries in terms of 
length of service ( a scalar) , occupation ( a  classificatory variable) , 
etc. One might then want to estimate the relative contributions 
of the explanatory variables to the variation of the de_pendent 
variable. Handling this problem by beta coefficients is well known 
when the explanatory variables are all of one kind, either all 
scalar or all classificatory. There seems, however, to be no con­
venient reference that discusses this matter when the explanatory 
variables are mixed, i.e. when they include both kinds. This expo­
sitory note might therefore be of some use. 

I 
Let x = ( x0 . x1 , . . . .  , xk ) where xk ::: 1 for an individual 

(or observation) if it belongs to category k(k = o , 1 ,  . . .  , K )  of 

classification, x, xk = o otherwise, and I � = 0 Xk = 1 .  More 

precisely, for any given individual i ,  Xki = 1 if i is in category 

k, o otherwise, and � � = 0 xki = 1 . To each i thus corresponds 

X; = (  X-oi ' ' X li ' , . . . ' XKi ) .  

Suppose it is appropriate to explain y in terms of x, z, u 
and v by means of a regression equation, where z is another 
classificatory variable ( z 0 , z 1 , . . . .  , Zj ) while u and v are real 
variables. (Discussion of more than two variables of either kind 
would be straightforward.) We calculate 

(1)  

where the a k , b j , p and q are the regression coefficients and y '  is 
the predicted y. As usual, overbars denote means. Note that x 0 
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and z0 are omitted in (1 )  in order to have detenninate coeffi­
cients (Suits 1957) .  

We want to express (1) in the fonn 

K J 
(2) y ' = y +  � a k xk + � b i zi + p ( J.L - ii ) + q ( v - v ) 

where x0 and z0 are included, and the ak and bi measure the 
effects on an individual's y resulting from its belonging to k of 
x and to j of z ,  respectively. It is to be noted that the a k and 
bi, which might be called category effects (Encarnacion 1975), 
are measured from y . For suppose that for an individual i , xk i = 1 for a particular ·k andzii = 1 for a particularj, Then 

y � = y + ak + b .  + p ( J.L .- � ) + q ( v .  - v ). 
I j I I 

so that ak and bi are simply added on to y .  

From least squares properties, using (1) ,  

K J 
= y - �  at xk - �  b *: z . 

1 1 1 J 

But c is also the predicted y for an individual satisfying x0 = 1 ,  

z0 = 1 ,  fJ. = ii and v = v.  Therefore 

( 4) 

(5) 

-

K -a = - L a* x 0 1 k k 
J -b = - � b *: z . 0 1 } } 
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Furt!!er, if an individual satisifies x k = 1 ( k :f= o ) , z 0 = 1 , Jl = P., 
v = v, the predicted y is c + a t . Since we already know from 

(3) - (5)  that 

(6) c == y + a0 + b0 

we have c + a t  = y + (a 0 + a t ) + b 0 so that 

(7) ak = a0 + a t k = l ,  . . . , K. 

The b . are similarly determined. 
J 

."":'�:· �· 

Substituting (6) in ( 1),  

K J 
= y  + a0 + b0  + � ( ak - a0 )xk + � ( bj - b0 )zi + p(Jl - ii ) 

+ q ( v - v ) 
K K J J 

= y + a0 ( 1 - I xk ) + L a k x k + b 0 ( 1 - :2: z .  ) + L b1.z1. 
1 1 ' 1 J 1 

+ P ( J.t - ii ) + q ( r: - v )  

But 1 - :2:� xk = x0 and 1 -- Lf zj = z0 ; hence (2) 

We note for later reference that xk = nk _ ; n, where nn. is the 
number of individuals for which x k i = 1 and n is the total number 
of individuals. Also, as one might expect, 

n K K K 
(9) L L akxk h!n = L ak nk In = I akxk = o .  

h = 1  K = O  0 · 0 

i .e.  the mean L � akxk = O · ( in the same way that the mean 
p ( Jl - j1 ), say, is zero ) .  For multiplying ( 7 )  by n k , summing both 
sides and then adding n0 . a0 to the results, 

s o  



which, in view of ( 4), gives (9) .  

II 

The motivation for calculating the partial beta coefficients of 
standard multiple regression is to be able to compare the relative 
contributions of the explanatory ( scalar) variables to the variation 
of the dependent variable (see, e.g . ,  E zekiel and Fox 1959, p. 196). 
Accordingly, the variables are standardized to zero means and 
unit variances, so that their beta coefficients become directl v 
comparable. Similarly , the beta coefficients discussed by Morgan 
et al ( 1962 ) perform the same function in the case of classificatory 
variables. Our problem is to see whether all the beta coefficients 
in a regression with mixed variables are directly comparable. 

Write 
-

v - v 

which is to be equivalent to ( cf. (2 ) )  
- K , J b P ( ll - il )  q ( v - u ) y - y  L o ak xk """o .z . 

.I J 
{ 1 1 )  = + + + 

sy s s s sy " y y 
J 

where Sy is the standard direction of y, etc . ,  

( 12 )  �u = p sjsy 

which is the textbook definition of a partial beta coefficient, 
similarly for �v, 

(13) � = X 

from Morgan et al. ( 1962),  and the functions f(x) and g(z) are 
implicitly d�fined by the equivalence of ( 10 )  and ( 1 1 )  and the 
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definitions of the {3 's .  It is clear that if �2u > �2v , u contributes 
more than does v to the explanation of y variation. Our object is 
to show that f(x), say, standardizes x essentially in the same way 
that (I-! - ii )ls standardizes u, so that all the beta coefficients are 
then directly �omparable. 

From ( 10) ,  ( 1 1 )  and (13), for individual i, 

(14) 

from which 

(15) 

� K 2 2 
� k = O a k x k i  

since cross-product terms vanish and xk i  = :f2k i  (because xk i == o 
or 1 and � K ) x == 1 ) But � k = O  k i · 

( 1 6) 
= 

corresponds precisely to ( 1 5  ) , the only difference being that while 
one can factor out p 2 in ( 16),  which of course does not affect the 

ratio, it is not possible to factor out 1: � a� in (15  ) ,  which per­
tains to a vector. The key observation is that x being a classificato-
ry variable , � K a xk . is the analogue of p (Jl · - ji )and both - k = O  k t z 

have zero means. 

This completes our task, and all the beta squares may then be 
ranked to indicate the relative contributions of their corresponding 
variable to the explanation of y variation. 
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RELATIVE CONTRIBUTIONS O F  M IXED VARIABLE TO THE 
VARIATION OF A REORESSAND 

. 
Cristina A. Parel, Ph.D. 

Discussant 

1. The use of  dummv variables in regression equations has 
not always been regarded favorably by some statisticians. But in 
application, ''dummy" variables are getting to be indispensable 
because of the nature of some factors. These factors may have 
only two or more mutually exclusive levels in which case one can­
not set up a continuous scale for the variables. However, the inclu­
sion of dummy variables renders the resulting normal equations 
"unsolvable " in view of the singularity of the matrix of coeffi­
cients. To remedy the situation ; that is, to be able to estimate 
the regression coefficients, some additional linear constraints 
involving the coefficients of  the '''dummy" variables need to be 
introduced. For example, if there are r sets of  "dummy " variables 
(or, classifications) used in the regression equation, there would be 
r constraints needed to have the regression .coefficients estimable . 
Two alternative methods are commonly used : ( 1 )  the sum of the 
coefficients of the "dummy" variables is equated to zero ; and 
(2) one specified coefficient of each set of "dummy" variables is 
equated to zero. Dr. Encarnacion used the second method. Using 
either of these methods, however, the resulting normal eqt:ations 
(obtained by the least squares method) can be solved directly 
with the use of an electronic computer because after using the 
constraints, the matrix of coefficients of the reduced normal 
equations will no longer be singular. 

2 .  To determine the relative importance of the independent 
variables on the dependent (or, response) variable, any of the 
following three measures may be used . 

by : 

where 

54 

i) the partial correla tion coefficient, ryj . k l  . .  , given 

ryj . k l . . . 
Jl -R2 . ':  

) )  

v1 -R? " 

Y y  

b i = the regression coefficient corresponding to the 
independent variable xi 



where 

and 

and 

,... 
x. = 

] the regressed valued of the independent variable 
xj on the remaining independent variables ; 

X = the mean of the X. values ; 
1 

sj = the standard deviation of the xj values 

SY = the standard deviation of the Y- values. 

ii .) the beta coefficient given by: 

s. 
b ;;: = b ;.:.L8 

1 J y 

iii) the coefficient of "part" correlation, given by:  

ryj ( k l . . .  ) = 

b .  S. /1 - R2.-: J 1 JJ 

where bj, sj and sy are as defined above. It is to be noted that the 
beta coefficient is the easiest measure, among the three, to com­
pute. However, the bet8. coefficient involves the unadjusted stand­
ard deviations of the variables involved. Obviously, the three mea­
sures have different values. However, usually, the ranking in terms 
of importance of the independent variables on the dependent 
variable will be the same, although this will not always be the case . 

3. Some general remarks may be pertinent at this point . The 
beta coefficients can be highly influenced by purposeful selection 
of sample values of one or more of the independent variables. That 
is, if the values of one or more of the independent variables are 
specified by the researcher, as in this case of "dummy" variables, 
the beta coefficients will have "sampling significance only with 
respect to a special universe in which the standard deviation of 
each of the independent variables is held constant for all possible 
samples." (Ezekiel & Fox, 1959). Thus, one should be judicious 
in using beta coefficients unless correlation models involving ran­
dom sampling from a normally distributed "natural" universe are 
used. 
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REMARKS ON RELATIVE CONTRIBUTIONS OF MIXED 
EXPLANATORY VARIABLES TO THE 

VARIATION OF A REGRESSA�TI 

By Tito A. Mijares, Ph.D. , Academician 

(The following prepared remarks were distributed to participant� 
at the conference. Dr. Mijares restated the problem of '<mi...xed� '  expla­
natory variables - discrete and continuous - in a general linear mode� .  
then proceeded to derive some tests on the regression coefficients t o  
effect some comparison among them . By examining the correlation 
matrix of the "mixed " set of explanatory variables, Dr. Mijares arrived 
at an interesting result which offers a direct interpretation of coeffi­
cients of discrete independent variables in regression problems. The 
correlation coefficient between continuous and discrete variables 
measures the degree of inequality of a particular characteristic among 
the different attributes in the population ; e .g. <'income inequality' ') .  

We have a general linear model in matric form 

( 1 )  

where Y � == ( Y, . . . . . . , Yn ) ;  X = ( X  ;1·) i = 1 n ,. = o . h .l . ... ' ? " . .. . ' • . ' • • • } 

with the first column of X 's each equal to unit y :  /3 ' = ( {30 , ;3 1 ,  
. . .  , ,6 k )  and ,u '  = ( ,u 1 ,  . . . . , J.1 11 ). {3 is a column vector of unknown para­
!l1eters and J1 is a column vector of random values. The usuai assump­
tions are : (a) the expected value E( f.l )  = o ,  ( b) E( ,u 11 ') = o � In ,where 
1 n is a unit matrix of order n and (] � <= is the common variance 
of the Jl·'s, ( c) X + l  is a set of fixed real numbers with rank k + l < n . 
The vector of pa.rameters {3 is to be estimated, usually by least 
squares. 

Without loss of generality the model may be restated by 
expressing the dependent vector Y and the explanatory variables 
X ij as deviates from their respective means and eliminating {3 0 . 
Thus equation ( 1 )  may be written 

(2) Y = X /3 + E 

where y ' = (y1 , . . . . . . , Yn) , Y · = Y. -Y l l ' 

x :::: ( X : ; ) ,  i = 1 •. . . . .  , 17, } = 1 ,  . . . .  , /2 .  
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If r5 - ( 1� .�- '. · ' · t f 1 t · · tes f .· r i - , 1- 1 ' . . . . I ;J '� ;  iS '(;Ile vee or 0 ... eas . squares estlma 0 {3 
equation (2)  may be written equivalently as 

y = x {3  + e 
' 

w here e is a vector of n residuals Y - x�. It can be established that 

3 ::-.: ( x ' x) -l x ' y .  The mean and variance of § are respectively 
� <md. o2  (x xt 1 • Equation ( 3) may be expressed by 

E 

( 4) 
where 

"' �  .... + .t '\ 

.J - y v 

.� .... . y = x p  

Ir;� terms o f  D r .  Encarnacion's formulation ( cf. eq. ( 1 ) ) y is the 
" predictor" of y. Thus� the vector y consists of the vector of 
expla ined and unexpla ined parts� e being the latter portion . The 
total number of regression coefficients in his paper is K + J + 4 
"'ivhich is equal to dirnension k in this note, if his p and q are 
denoted by ��- l  and �h , respectively. For a given element of -��i 
in this note 

y c':';: y + a :)  + bo 
of that paper ( cf. eq. (2) ,  Encarnacion's paper) . The coefficients 

� 1 , . .  , & k _ 2 here are the same as the coefficients of the discrete 

explanatory variables in that same paper. 

Dummy Variables 

VJe may now view the problem addressed by Dr. E ncarnacion 
as extensions of a general linear model in certain aspects. In eco­
nometric work the introduction of discrete variables is generally 
meant the inclusion of "dummy" variables in the usual regression 
model. Suppose Y is income expressed by gross national product 
(GNP) and X is total investment. A linear model for two periods 
may be expressed 

y = al + �� X+ E (before the war) 

y· ... ct .. 
�·r 

.:J .X+ f" { after the 'Nar) 
/-



where Z = 0 before the war and Z = 1 after the war. Hence, 

E(YIZ= 0) = ao + �X 

E(YIZ= l) = ( a 0  + �0 ) + af3X 

Note that a 1 is now equivalent to a0 and a2 = ao + � o 
( cf. lines 5 and 6 from the bottom, p. 2. ,  Encarnacion's paper) . 
Hence, we may treat the problem as an ordinary linear regression 
problem, unrestricted case in the sense that no restrictions as 
imposed on the coefficients. 

Tests on the Coefficients 
To make tests on the coefficients an additional assumption 

on the distribution of the residual term e j, i = 1 ,  . . . . , n in 
equation (2)  is needed. Suppose the e i·s are independently and 
identically normally distributed random variables with zero 
means and common variance a�. The L.S. estimate of � is 

(7)  

Then 
(8) 

� = (x 'x)-1 x ·y 
= � + (x'x )  -1 x ·e 

E(�) = � 
A 1\ 

var (�) = E [(�- �) ({3- �)' ) 
= E [ (x 'x) -1 x 'e e 'x(x 'x) -1 ] 
= a2 (x 'x) -1 

€ 

One sees from (7)  that � has a multinormal distribution over a 
k-dimensional space with density Nk ({3, a2e (x · x)-1 ) .  Hence, a 
linear function c '{3 has a univariate normal distribution with 
density N(c '{3, a �  c '  (x ' x) -1 c). The statistic 

(9) 
c � - c ·� 

t = --;::=======­
s€ Jc · (x ' x) -1 c 

will be distributed as Student 's - t with n·k degrees of freedom, 
where se = ye 'e/(n-k) . � and e are independently distributed. 

We can now compare coefficients of classificatory variables 
(e.g. the coefficient of the ;th income group of one region against 
coefficient of the /h income group of another region) .By choosing 
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c �ippropriate to our hypotheses on the 6 's.  we can make the tests 
un the coefficients . Let c ' = (O, . . .  , 0 ,  1 ,  0 ,  . . .  , 0 , - 1, 0, . . . , 0), 
the ith  element is  1 and the jth element is -1 and zeros in other 
places. This is equivalent to testing H 0 : f3; - {3 . '"" 0 or �i against 
H 1 :  �i =f: �j" The probability is a that I t I -} L:tf 2 ,  n-k , where 
t a12,n- k is the tabulated value of t with n-k d.f. 

Concluding R emarks 

The formulation of the general linear model given in (1 )  
includes an assumption that the domain of the explanatory va­
riables are real numbers and results derived therefrom apply also to 
the mixed case which Dr. Encarnacion deals with in his paper. 

Apart from the problem that units of measures in the va­
riables are not easily interpretable when compared, working with 
correlations among variables are of frequent interest because 
the square of multiple correlation coefficient 

( 10) 

explains directly the proportion of total variation in the depen­
dent variable Y explained by variables X 1, . . . . , X k .  Occasionally 
also the available data we have on the problem are expressed in 
correlation coefficients. Alternatively, the Ws in the linear regres­
sion model of equation (2) can be derived from correlations 
among the variables. We can compute the simple ( zero-order) 
correlations between the variables Y, X 1 ,  . . , Xk and display them 
in matric form R = ( ri) where roj (j = �· . .  , k )  denotes the 
correlation between Y and X j and rii = l(z = 0, . :.· , k ). Then the 
least squares regression Y = {31 x 1 + . . . . + {3xxk . where y, 
x 1 ,  . . . •  , xk are deviates of variables Y, X 1 '  . . . .  ' Xk from their 
respective means would have coefficients 

( 11) 5o Roi ff. = -
J sJRoo 

where Roi and R00 denote the co-factors of r0i and r00 in the 
matrix R, respectively, and s0 ,  and s1 are the respective standard 
deviations of Y and X- . An alternative expression for the least . • 1 
squares regresswn IS 
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This easily simplifies to 

( 16) 

since 

v n 
= r w . - p(r, w .; 

1 l 1 1 

n 
= pow and p r, w i :; pnw 

1 

The simple correlation between x and w is 

( 17 ) 

where 

Reference 

TX U1 := 

f w . -p f w .  
1 l 1 l 

:::: ... /i; (w i - w)l l(n - 1) and q :::: 1 -p 
1 

H .  Cra:n er: "\-1athematical Methods of Statistics ", Princeton 
Universit\' Press .. Princeton. N.J . .  1946 .,; ., .· - ;  
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RELATIVE CONTRIBUTIONS OF MIXED VARIABLE TO THE 
VARIATION OF A REGRESSAND 

Burton T. Onate, Ph. D. 
Discussant 

Being the last discussant, I assume that Drs. Parel and Mijares 
would be able to cover perhaps 90 per cent of what should be said. 
But least squares and regression is a broad field and my paper will 
deal on their theoretical foundations. The four methods of estima­
tion in a general linear form are (i) ordinary least squares, i ( ii) 
generalized least squares, (iii) maximum likelihood and (iv) best 
linear unbiased estimator (blue) . Their equivalents are indicated 
depending upon the assumptions made. 

Two well known ooints are worth mentioning, namely ; (i) 
least squares estimation does not pre-suppose any distributional 
properties of the e 's other than finite means and finite variances ; 
(ii) maximum likelihood estimation under normality assumptions 
lead to the same estimator, b, as generalized least squares : and 
this reduces to the ordinary least squares estimator b when V=d2J 
Therefore, one could see that the estimation procedures will 
require the use of some transformations which essentially was 
applied by Dr. Mijares to derive the estimators, and the variance 
and co-variance matrices. These results of Dr. Mijares could be 
compared with those given in the paper under discussion. Existing 
computer programs should be tested for "integrity" and using the 
ramifications indicated in Mijares' discussion paper. 

A survey on the "Method of Least Squares" has been con­
ducted by S .  L. Harter which appeared in several issues of the 
International Statistical Review of 197 4-7 5 .  Harter divided this 
era into four parts, (I) The Pre-Least Squares, (II) The Awakening, 
(III) The Modern Era I and (IV) The Modern Era II. A subject 
index to the references arranged in alphabetical order of the Code 
Letters was used to classify more than 5,000 papers/authors. The 
paper under review could fall in II, III and IV. 

The uses of code and dummy (0, 1 )  variables are illustrated 
in the Philippines by the National Census Statistics Office· indi­
cators on income (salary). One would see that the code used 
would be called classificatory variable as the level and the cate­
gory inside as the factors and inside the factor as level. In occu­
pation, they have developed for example codes 1 ,  2 ,  3,  4, 5,  6. One 
criticism is that one cannot use the values because no relationship 
exists in terms of occupational status. And to get away from this 
problem, so called dummy variables are used. Another example is 
education as a factor (page 5 )  and there are many levels rmder 
education (factor). Here, there is some kind of order but even then 
this order is in terms of educational status. Again, dummy va� 
riables would be useful . 
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(2) Generalized least squares 

On assuming that the variance-covariance matrix 
of  e is var (e) = V, this procedure involves minimizing 
(y = Xb ) ' V-1 ( y  = Xb) with respect to b which leads to 

� I b = cxv-� x)-l x v-l y. 
When V = a2 I, the generalized and the ordinary least 

� A 

squares estimators are the same : b = b . 

( 3) Max imum likelihood 

With least square estimation no assumption is made 
about the form of the distribution of the random error 
terms , which are represented by e . With maximum like­
lihood estimation some assumption is made about this 
distribution (often that it is normal) and the likelihood 
of  the sample of observations represented by the data is 
then maximized. On assuming that the e 's are normally 
d istributed with zero mean and variance-covariance 
matrix V, i.e.,  e - N(o , V), the likelihood is 

L = ( 2rr )  1 n N  1 V l-1 12 exp [-1/2 ( y -Xb )  
' v-1 ( y  � Xb ) J . 

Maximizing this with respect to b is equivalent to solving 
� (loge L)/a b = 0. The solution is the maximum like­
lihood estimator of b is 

b = ( x'v-l x)- l  x'v-1 Y, 

the same as the gen.:.ralized least squares estimator. As 
before, when V = cr2 I, b simplies to b .  The estimator 
b is the maximum likelihood estimator, if we assume 
that 

Two well-known points are wortt, rne:ntioning about 
these estimators. First, least squares B:r�·imatkm does not 
pre-suppose any distributional prop '?::rtiea of the e 's 
other tha.rt finite means and finite vLrria.nces. Second 
maximum likelihood estimation ,xnder ·" normality 
assuraptions lead to the same estinntor, b as gene­
ralized least squares; and this reduce: to the ordinary 
least squares estimator b when V = c ::  I 



( 4) The best linear unbiased estimator (b. l. u. e. )  

For any row vector t '  comfonnable with b the scalar 
t 'b  is a linear function of  the elements of the parameter 
vector b. A fourth estimation procedure derives a best, 
linear, unbiased estimator (b.l.u.e.) of t'b. 

The b.l.u.e. of  t'b is ( (X'V-1 X)-1 X'V-1 y, and its 
variance is 

v (b .Lu.e. of t 'b )  = t'(X'V-1 X) -1 t.  

From among all estimators of t 'b that are both linear 
and unbiased the one having the smallest variance is 
t'( XtV-1 Xr1 X'V-1 y ;  and the value of this smallest 
variance is f(X'V-1 X(1 t. 

3 .  In view of this equivalence, it may be worthwhile to use the 
results for the Ordinary Least Squares Method and apply the 
suggested transformation in reducing the original x, z, u, and v 
to .N(0,1) instead of N(O,l o 2  ) .  Another suggested theoretical 
framework is the Principal Component Method. 

Survey on .Method of Least Sq uares 

4 .  H. Leon Harter ( 197 4, 1975) wrote a series of articles entitled 
"The Method of Least Squares and Some Alternatives'', in the 
International Statistical Review ( ISR).  These series of articles are 
summarized as follows : 

Part I Introduction, Pre� Least Squares Era ( 16 32-
1804) and Eighty Years of Least Squares ( 1 805 -
1884) ; ISR ( 1 974) 4,2 ,  pp. 147 -17 4 .  

II The Awakening ( 1885 - 1945 ) ;  ISR ( 1974) 
42, pp. 235 - 264l 282.  

III The Modern Era (I) ( 1946 - 1964) ; ISR ( 1 97 5 )  
43, pp. 1-44. 

IV The Modern Era (II )  ( 1965··197 4) ; ISR ( 1975)  
43, p p .  1 25-190 ; ISR (1975) 43,  p p .  27 3-2'7 8 
(Addendum) . 

A Subject Index to the references arranged in alphabetical order 
of the Code Let-ten; was al.so made available (see Appendix Table 
A) .  A total of 148 Code Letters was used to classify more than 
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5,000 authors/papers. The paper under review could be classi­
fied under one or more of the Code Letters presented . If not, w e  
could add a new Code Letter. 

Uses of Codes and Dummy (0�1)  Variables 

5 .  An alternative analysis known as regression on dummy { 0 .  i 
variables has certain advantages but it may introduce into t.he li­
near model the problem of not of full rank. The NCSO uses codes 
in the presentation of detailed data on labor force, income and 
expenditure characteristics of household sampled. The regres­
sion of income (salary) , expenditure and investment of sampled 
families on dummy (0 .1)  variables1 may include class of  work­
er ( occupation) ,  education and other characteristics which are 
coded : Examples of these codes are as follows :  

Level/Class of Worker (Occupation) - Factor 
1 - Worked for private employer 
2 - Worked for government/government corporation 
3 - Self-employed without any paid employee as de­

fined in "4" 
4 - Employe� i n  own family-operated farm/business 

(with one or more regular paid employees or one or 
more hired employe:�s most. of the weeks of the last 
quarter in operatior� . .  

5 - With pay on own family-operated farm or business 
6 - Without pay on own family-operated farm or busines�� 

Highest Grade Completed (E<iucation ) 
· Factor Level 

00 - No grade completec'_ 
Elementary 

11 - 1st grade 
1 2  - 2nd grade 
13  -- 3rd grade 
14 -- 4th grade 
15  - 5th grade 
16 - 6th grade and 7th grade 

fligh School 
21 -- 1st year 
22 - 2nd year 
23 - 3rd year 
24 - 4th year 

1 Searle, S.R. Linear Models. 

6 6  

John Wiley & Sons, Inc. 
N.Y. 197 1 

College Graduate 
�ve! 

30 
34 
3�.' 

- 1st year 
- 2nd year 
- 3rd year 
- 4th year 
- 5th year 

or higher 

For college graduates 
Specify the Bache­
lor's or highest degree 
completed and field 
of study. 



The occupational and educational codes may be collapsed into 
3 or 4 categories. One question is, ' 'How can Occupation be 
Measured ". One possibility is to measure it by the code numbers 
1 ,  2 ,  3, 4, 5,  6. An inherent difficulty, however, occurs with the 
definition of x as a code number to measure occupational status. 
Although the six ( 6) categories of occupation or class of worker 
represent different kinds of occupation, the allocation of the 
numbers 1 to 6 to these categories as measures of occupational 
status may not accurately correspond to the underlying measure 
of whatever is meant by occupational status. The allocation of 
the number codes is, therefore, quite arbitrary. By giving a self­
employed person an x -value of 3, we are not really saying that he 
has three times as much status as worked for private employer 
( x = 1 ) .  But in terms of the model, what we are saying is that 
E(investment (i) or Income (In) of private employer) = b a  + b l  
E( (i) or (In) of self-employed) = ba + 3bl 
Thus, allocating codes to the different categories is not entire­
ly justified so far as the suggested model is concerned. Such cate­
gory codes are also used in many characteristics of interest such as 
education, management level, malnutrition� source of raw ma­
terial, treatment and plant location in an industrial process, etc . 
This problem on code number is avoided by using the technique 
of regression on dummy (0, 1)  variables. Estimation procedures 
as illustrated above will immediately imply that a sound and 
scientific sample is drawn from the universe and from this sam­
ple, estimates are made of the parameters in the linear model. 
Even if the sample is drawn on a sound and scientific manner, it 
would be extremely difficult to generate equal number of data 
or the so-called balanced data. More often than not , there would 
be unequal numbers of observations in each category or sub.dass 
including perhaps some categories with no observations at all .  
This situation is called unequal numbers data, unbalanced data or 
"messy" data. Some difficulties will be met in the analysis . 

6. In studying the effects of occupation, education or mal­
nutrition, on investment or income behavior, we are interested 
in the extent to which each category of each variable is associated 
with investment. To acknowledge the measurability of the va­
riable and the associated arbitraries or subjectivity in dealing on 
their categories, the concept of "factor" and "level" may be 
introduced. The word "factor" denotes the occupation, education, 
malnutrition which in turn are divided into "levels". Examples 
were given earlier. The "factor" cannot be measured precisely 
by a cardinal value while the word "variable" is reserved for 
that which can be measured. Thus, investment, income or salary 
are variables . Note that each person falls into one and only one 
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occupational or educational level to which he belongs to. Let the 
corresponding x take the value unity ( 1 )  and let all other 
x 's for that person to have a value of zero ( 0) . Note that in tht 
model of the paper under review , there is a mixture of both dum­
my (0,1)  and measurable variables similar to y .  Care must be 
taken to insure that the resultant X matrix is of full rank. 

Sampling Variation and Resultant Distrib ut ion 

7 .  Selected indicators will illustrate the level of and distribu­
tional property of poverty indicators though the major periods 
in the project cycle. i .e . ,  

p 

ta = prior to or at appraisal time, 
tpe = at completion time or at post-evaluation 
tfd = at full development, and 
te = at end of project life. 

Chart A. Probability Distributions am� Lorenz Curves of 
Indicators from ARD Projects . 
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Some of the indicators are production oriented. They are, how­
ever, related to poverty indicators such as ownership, size of land 
and yield, employment and labor inputs, etc. All of the indicators 
are skewed to the right showing extreme inequalities at the begin­
ning of the project life ( ta or tpe) except perhaps the data on price 
or value of paddy. Chart A shows empirically how the Project 
Benefit Monitoring and Evaluation System (PBMES) will be able 
to measure and illustrate the level and distribution of each poverty 
indicator which is relevant to the project site.1 These distributions 
could serve as framework in the sampling procedures and to the 
levels of variation in the V matrix on a time series. 

1 Onate, B.T. Benefit Monitoring and Evaluation System as a Component 
of ARD Project Design. ADB. 198 1 

Appendix Table A 

METHODS O F  LEAST SQUARES AND SOME ALTERNATIVES 
( H. LEON HARTER) 

Glossary of Code Letters 

A C  Arley's criterion (for rejection o f  outliers) 
AD Average (absolut e )  deviation 
AE adaptive estimators 
AI Adichie's estimators (of regression coefficients) 
AM arithmetic mean 
AR Anscombe's rules ( fo r  rejection of outliers) 
AS average slope (of regression lines) 
AT Andrew's tests (for rejection of outliers ) 
AV average ( all types) 
B C  Bertrand's criterion (fo r  rejection o f  outliers) 
BF Bartlett 's ( method of) fitting (st raight lines) 
BM Brown-Mood estimators (of regression parameters) 
BT best two (out of three) 
CC Chauvenet's criterion (for rejection of outliers) 
CD censored data 
CH cliff hangers 
CM Cauchy's method (of interpolation )  
CT (Bliss)-Cochran-Tukey criterion (for rejection of outliers) 
CU Cucconi's criterion (for rejection of outliers) 
DA discard averages {trimmed means) 
D C  Dixon's criterion (for rejection o f  outliers) 
D H  differences at half range 
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D I  dispersion ( measures of) 
DQ Quesenberry-David criterion (for rejection of outliers) 
EA equal areas ( under joint p.d. curve) (Laplace's "most advantageous 

method") 
EB empirical Bayes approach (to outliers) 
EE van Eeden estimators (of location parameters) 
EM Edgeworth's modification (of Stone's second criterion) 
EX extremes (largest and smallest values in sample) 
FC Ferguson's criterion ( for rejection of outliers) 
FM folded medians 
GA Gastwirth estimators 
GC Glaisher's criterion ( for rejection of outliers) 
GD Gini's mean difference 
GE geometric midrange 
GG geometric range 
GM geometric mean 
GP generalized Pitman estimators 
GR Goodwin's rule ( for rejection ofoutliers) 
G S  Grubbs' criterion (for rejection o f  outliers) 
HA Hodges' alternative (to Hodges-Lehmann estimator) 
HC Heydenreich 's criterion (for rejected outliers ) 
HE Harter's estimators (1972) 
HG Hogg's revised estimator ( 1972) 
HL Hodges-Lehmann estimator 
HM harmonic mean 
HO Hogg's estimator (1967)  
HQ Hogg's estimators based on Q statistic. 
HS Hulme-Symms alternative (to the rejection of outliers) 
HU Huber's estimator 
HV Harter's regression estimators with variable boundaries 
IC Irwin's criterion (for rejection of outliers) 
IR interq uartile range 
JA Jeffrey's alternative (to the rejection of outliers) 
JE Jureckova's estimators (of regressio n coefficients) 
JO Jorgenson's estimators 
KC Kudo's criterio n (for rejection of outliers) 
KE Kraft-van Eeden estimators (of location parameters ) 
KT Kendall's tau estimator (Sen) 
LA Laurent's analogue (of Thompson's criterion) 
LD largest (absolute) deviation 
LE L-estimators (linear combinations of order statistics) 
LF least (sum of absolute) first (powers) ( Laplacel> "method of situa-

tion") 
LN least number of deviations (least sum of zero powers) 
LP least (sum of) pth ( powers of absolute deviationf!) 
LR linear regression 
LS least squares 
LW linearly weighted means 
MA method of averages 
MC Merriman 's criterion (for rejection of outliers) 
MD median 
ME M-estimator ( maximum likelihood type} 
MG method of group averages 
M H  Harter's modified estimators (1973) 
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MK McKay's criterion (for rejection o f  outliers) 
M L  maximum likelihood 
MM minimax method ( minimize maximum residual) 
MO mode 
MQ median-quartile average 
MR midrange 
MS method of successive differences 
MT median and two other order statistics 
MU Murphy's criterion ( for rejection of outliers) 
MV Moore's variable-bound estimators 
MW multivariate Wilks' criterion (for rejection of outliers) 
MZ Mazzuoli's criterion (for rejection of outliers) 
M4 maximum (sum of) fourth ( powers of p.d.f. of errors) 
NC Nair's criterion (for rejection of outliers) 
NO median deviation 
NM Newcomb's method (of treating outliers) 
NR nonlinear regression 
NS Nair-Shrivastava method (of curve fitting ) 
OM Ogrodnikoff's method (of treating outliers) 
OS order statistics 
PA plus approximative methode (most approximative method) 
PC Peirce's criterion (for rejection of outliers ) 
PO dispersion with norm p 
PL location with norm p 

PM power means 
PS Pearson-Chandra Sekar criterion (for rejection of outliers) 
Q A  quadratic average ( mean) 
QD quartile deviation (semi-interquartile range ) 
Q L  quasilinear estimators 
QM quasi-midrange (quasi-median) 
QN quantiles 
QR quasi-range 
QT quarter technique 
RA range 
RC Rohne's criterion (for rejection of outliers) 
RE R ·estimators (based on rank tests) 
R L  robust estimators o f  location 
RM range method 
RR robust estimators of regression 
RS robust estimators of scale 
SA stochastic approximation estimators 
SB semi-Bayesian approach (to outliers) 
SC Stone's ( first ) criterion (for rejection of outliers) 
SD standard deviation (or variance = SD2 ) 
SE sine estimator 
SH shortest half estimators 
SI successive interval method 
SK skipped procedures 
SM Stewart 's method (criterion) (for rejection of outliers) 
SN Schuster-Narvarte estimator 
SP (method of) selected points 
SR semirange 
ST Student's rule ( for rejection of outliers) 
SW Switzer's estimator 
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82 Stone's second criterion (for rejection of outliers) 
TC Tippett's criterion (for rejection of outliers) 
TD transformation of data (and choice of model) 
TE theory of errors 
TF Tukey's FUNOR-FUNOM procedure 
TJ Topsoe-Jensen criterion (for rejection of outliers) 
TM Thompson's method ( criterion )  (for rejection of outliers) 
TO treatment of outlying observations 
TR trimming 
VC Vallier's criterion (for rejection of outliers ) 
W A weighted average 
WC Wright's criterion (for rejection of outliers) 
WH Wright-Hayford criterion (for rejection of outliers) 
WI Winsorization 
WK Walsh-Kelleher estimators 
WM Winsorized means 
WR Walsh's rule (criterion) (for rejection of outliers) 
WV Winsorized Yariances 
YE Y anagawa 's estimator 
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