Relative Contributions of Mixed
Variables to the Variation

of a Regressand

By Jose Encarnacion, Ph. D., Academician

Consider a regression equation whose regressors include clas-
sificatory as well as ordinary scalar variables. A classificatory
variable is essentially a vector that has as many components as
there are different (mutually exclusive and exhaustive) catego-
ries in the classification. For example, one might estimate a re-
gression equation that explains employees’ salaries in terms of
length of service ( a scalar), occupation (a classificatory variable),
etc. One might then want to estimate the relative contributions
of the explanatory variables to the variation of the dependent
variable. Handling this problem by beta coefficients is well known
when the explanatory variables are all of one kind, either all
scalar or all classificatory. There seems, however, to be no con-
venient reference that discusses this matter when the explanatory
variables are mixed, i.e. when they include both kinds. This expo-
sitory note might therefore be of some use.

I
Let x =(xy %x;,....,x;) where x;, =1 for an individual

(or observation) if it belongs to category k(k = 0,1,...,K) of

classification, x,x, =0 otherwise, and )) }}: _ _xp =1. More

0
precisely, for any given individual i, X = 1 if i is in category
k, 0 otherwise, and Z I;= o *ki = 1. To each i thus corresponds
X; .—_(xzo,-- s X1y v v s xK,-).

Suppose it is appropriate to explain y in terms of x, 2, u
and v by means of a regression equation, where z is another
classificatory variable (z,,z,,....,2;) while u and v are real
variables. (Discussion of more than two variables of either kind
would be straightforward.) We calculate

(1) ¥ =c+

— 0

J _ _
afx. + lzb;.“zj + plu—4)+ glv—v)

where the a% | b’}‘-‘, p and q are the regression coefficients and y~ is
the predicted y. As usual, overbars denote means. Note that x
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and 2z, are omitted in (1) in order to have deterrninate coeffi-
cients (Suits 1957).

We want to express (1) in the form

J

(2) y'=y+ a,x, + '23 b, 2 +plp—p)+ glv—"2)

oM X

where x, and 2, are included, and the a; and bj measure the
effects on an individual’s y resulting from its belonging to k of
x and to j of z, respectively. It is to be noted that the a; and
b;, which might be called category effects (Encarnacien 1975),
are measured from y . For suppose that for an individual i,
x, ;= 1 for a particular k andz.ji = 1 for a particularj Then
yi=y+a,+b,+plu—u)+qlv,—v)
so that a;, and b; are simply added on to y.

From least squares properties, using (1),

D S S _ -
(8) ¢ =y —2Z6g x,— 2 bFz; — pla—i) —q(v—7)

Y] K*" Jb*
=Y IR X, TZ07g

But ¢ is also the predicted y for an individual satisfying x, = 1,
zy,=1,e=p and v=v. Therefore
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Further, if an individual satisifies x, =1(k#0), 2,=1, #= a,
v=uv, the predicted yis ¢ + a’}’; . Since we already know from
(3) — (5) that

(6) c=¥+a, +b

wehave ¢+ a* = 57+(00"‘a°;)+ bo so that

k
(7) a,=a,*a%} k=1,...,K.

The bj are similarly determined.

Substituting (6) in (1),

8) _ K 3. B} y
y =y+ao+b0+}“l.a’};xk+%bjzj+ plu—u) + qv—u)
=y *ag by + 2 (a, mag)x, + 2(b;=by)z + plu—u)
+ q(v—0)

K J J
+Z]akxk_+b0(1 —2 2 )+ bz

_ K
=3’+‘10(1~21xk) A

+ p(p—w) + q(v—0)

But 1 —ng x, = x, and 1 --El‘] z; = 2, ; hence (2)

We note for later reference that X, = n, /n, where ny, is the
number of individuals for which x pi = 1 and n is the total number
of individuals. Also, as one might expect,

X, =0.

a,x,

n
(9) =
h=1

> M

K
/n =2a nk/n=
0 .

o Mx

a,x
_o (kTR k

K —
i.e. the mean 2qa,%, = 0. (in the same way that the mean
p(p — p ), say, is zero). For mulitiplying (7) by ny, summing both
sides and then adding n,. a to the results,
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3 E
k% = ”“0+-1'"k“k

which, in view of (4), gives (9).
II

The motivation for calculating the partial beta coefficients of
standard multiple regression is to be able to compare the relative
contributions of the explanatory (scalar) variables to the variation
of the dependent variable (see, e.g., Ezekiel and Fox 1959, p. 196).
Accordingly, the variables are standardized to zero means and
unit variances, so that their beta coefficients become directlv
comparable. Similarly, the beta coefficients discussed by Morgan
et al (1962) perform the same function in the case of classificatory
variables. Our problem is to see whether all the beta coefficients
in a regression with mixed variables are directly comparable.

Write

y‘_'§ —n f( + (2)+5 ,U—IE +3 U—a
(10) = Py x) ﬁzg u g T s

Sy u 1

which is to be equivalent to (cf. (2))

vy =y  hax,  zfoz  plu—w) qlv—v)
{11) = ¥ + +

% Sy Sy B Sy

where s, is the standard direction of y, etc.,
(12) B, =P su/5y

which is the textbook definition of a partial beta coefficient,
similarly for gy,

(Zg ai n,/(n— 1§y
13) 6, -

S\l

from Morgan et al. {1962), and the functions f({x) and g(z) are
implicitly defined by the equivalence of (10) and (11) and the
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definitions of the g’. It is clear that if 8%, > 8%, u contributes
more than does v to the explanation of y variation. Our object is
to show that f(x), say, standardizes x essentially in the same way
that (u —u)/s,, standardizes u, so that all the beta coefficients are
then directly comparable.

From (10), (11) and (13), for individual ;,

v K

~k=0 %Xki
(14)  flx,)= :

(};fzoa; n,/(n — 1))
from which
K
f(x,) = i T

(15) i n

.
“h=1

- K 2 2 .
Xp_g @) Xpp/(n—1)
since cross-product terms vanish and x,; = -’.Czki (because x,, . = 0
orl1and yK - But
Zhoo) X = 1)

(16) (pj_ﬂ)z D’ (uf__;)z

Sy " pw, @) /n—1)

corresponds precisely to (15), the only difference being that while
one can factor out p2 in (16), which of course does not affect the

ratio, it is not possible to factor out Zg a; in (15), which per-
tains to a vector. The key observation is that x being a classificato-
ry variable, zf_o a, X, is the analogue of p(u; — u )and both
have zero means.

This completes our task, and all the beta squares may then be
ranked to indicate the relative contributions of their corresponding

variable to the explanation of y variation.
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RELATIVE CONTRIBUTIONS OF MIXED VARIABLE TO THE
VARIATION OF A REGRESSAND

Cristina A. Parel, Ph.D.
Discussant

1. The use of dummyv variables in regression equations has
not always been regarded favorably by some statisticians. But in
application, “dummy” variables are getting to be indispensable
because of the nature of some factors. These factors may have
only two or more mutually exclusive levels in which case one can-
not set up a continuous scale for the variables. However, the inclu-
sion of dummy variables renders the resulting normal equations
“unsolvable” in view of the singularity of the matrix of coeffi-
cients. To remedy the situation; that is, to be able to estimate
the regression coefficients, some addifional linear constraints
involving the coefficients of the “dummy’’ variables need to be
introduced. For example, if there are r sets of “dummy’’ variables
(or, classifications) used in the regression equation, there would be
r constraints needed to have the regression.coefficients estimable.
Two alternative methods are commonly used: (1) the sum of the
coefficients of the “dummy’’ variables is equated to zero; and
(2) one specified coefficient of each set of “dummy’’ variables is
equated to zero. Dr. Encarnacion used the second method. Using
either of these methods, however, the resulting normal equations
(obtained by the least squares method) can be solved directly
with the use of anelectronic computer because after using the
constraints, the matrix of coefficients of the reduced normal
equations will no longer be singular.

2. To determine the relative importance of the independent
variables on the dependent (or, response) variable, any of the
following three measures may be used.

i) the partial correlation coefficient, Yvj . k1. ., given

by: -
S; 1 Rz}l

Tyi . kl.. = b -
g : _Rz
vl vs
where bj = the regression coefficient corresponding to the
independent variable x;
X -X)
A
V. z( Xj . X) 2
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where

X j = the regressed valued of the independent variable
X jon the remaining independent variables;
and X = the mean of the X f values;
and S i = the standard deviation of the X j values
Sy = the standard deviation of the Y- values.
i) the beta coefficient given by:
b = b
J J Sy

iii) the coefficient of ‘“‘part’’ correlation, given by:

b;S; v1—R%

Sy

where b;, S; and S, are as defined above. It is to be noted that the
beta coefficient is“the easiest measure, among the three, to com-
pute. However, the beta coefficient involves the unadjusted stand-
ard deviations of the variables involved. Obviously, the three mea-
sures have different values. However, usually, the ranking in terms
of importance of the independent variables on the dependent
variable will be the same, although this will not always be the case.

3. Some general remarks may be pertinent at this point. The
beta coefficients can be highly influenced by purposeful selection
of sample values of one or more of the independent variables. That
is, if the values of one or more of the independent variables are
specified by the researcher, as in this case of ‘‘dummy’’ variables,
the beta coefficients will have ‘‘sampling significance only with
respect to a special universe in which the standard deviation of
each of the independent variables is held constant for all possible
samples.” (Ezekiel & Fox, 1959). Thus, one should be judicious
in using beta coefficients unless correlation models involving ran-
dom sampling from a normally distributed ‘‘natural’’ universe are
used.
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REMARKSE ON RELATIVE CONTRIBUTIONS OF MIXED
EXPLANATORY VARIABLES TO THE
VARIATION OF A REGRESSAND

Bv Tito A. Mijares, Ph.D., Academician

(The following prepared remarks were distributed tc participants
at the conference. Dr. Mijares restated the problem of “mixed’’ expla-
natory variables -discrete and continuous-in a general linear mode..
then proceeded to derive some tests on the regression coefficients to
effect some comparison among them. By examining the correlation
matrix of the ‘“mixed” set of explanatory variables, Dr. Mijares arrivec
at an interesting result which offers a direct interpretation of coeffi-
cients of discrete independent variables in regression problems. The
correlation coefficient between continuous and discrete variables
measures the degree of inequality of a particuiar characteristic among
the different attributes in the population;e.g. “income inequality’’).

We have a general linear model in matric form

(1) V=X8 +u
WhereY -—(Y """ ’YI'I X—(X’j) lﬁl ...... fl,]‘:O,...s'k:
with the ﬁrst column of X's each equal to um'ry 8= (£a, 54,
. Gp)andu” =(u i ,....»ip J-B1s a column vector of unknown para-

meters aneé uis acolumn vector of random values. The usual assump-
tions are: (a) the expected value E(u) 0,(b)E(up’)= - o 1, ,where
1, is a unit matrix of order n and s < is the LOITIH]OD variance
of the u’s,(c) x+11s a set of fixed real numbers with rank k+1<n,
The vector of parameters § is to be estimated, usually by least

squares.

Without loss of generality the model may be restated by
expressing the dependent vector Y and the explanatory variables
Xij as deviates from their respective means and eliminating gg.
Thus equation (1) may be written

(2) Yy =x 0 + €
== -~ n
where y’:(yl, ...... s Yn), y,~=Y,-—Y, Y = YYi/n
i=1
X = {x:5n 0= 1,...., n,1=1, ¢



o ,‘:1 — v:‘ ,'/J\ \‘, . L. w
ity (.F‘i »» -0 D00 {5 the vector of leasf squares estimates of
eguation (2) may be written equivalently as

{3} y=x€ +¢

where e is a vector of n residuals ¥ ~ x;i it can be established that
g = (x’ x)7x"y. The mean and variance of 5 are respectiveiy

£snd ¢ (x%)' . Eguation (3) may be expressed by
(%) yo=oy ot e
where
(8) b= xp

Ir. terms of Lr Encarnacion’s formulation {cf. eq. {1)) yis the
“predictor’” of . Thus, the vector v consists of the vector of
explained and unexulamed parts. e being the latter portion. The
total number of regression coefficients in his paper is K + J + 4
which iz equal to dimension & in this note, if his p and g are
-Jenoted by fx_; ana ﬁ;c , respectively. For a given element of »
iz this note

2y

=y +ay T 9,

»f that vaper (cf. eq. (2), Encarnacion’s paper). The coefficients
31 o 3 b here are the same as the coefficients of the discrete

e)iplanatory variables in that same paper.

Dummy Variables

Ve may now view the problem addressed by Dr. Encarnacion
as extensions of a general linear model in certain aspects. in eco-
nometric work the introduction of discrete variables is generally
meant the inclusion of “dummy’’ variables in the usual regression
model. Suppose Y is income expressed by gross national product
(GNP) and X is total investment. A linear model for two periods
may be expressed

y = + fX+ ¢ {before the war)

v = a  + ¥+ ¢ {after the war)

L

The gpwo eguations mav pe combined into a single eguarion



where Z = 0 before the war and Z = 1 after the war. Hence,
E(YIZ=0) = ¢ + BX

E(YIZ=1) = (ay + By) + oBX

Note that ay is now equivalent to ¥; and %, = @ + B
(cf. lines 5 and 6 from the bottom, p. 2., Encarnacion’s paper).
Hence, we may treat the problem as an ordinary linear regression
problem, unrestricted case in the sense that no restrictions as
imposed on the coefficients.

Tests on the Coefficients

To make tests on the coefficients an additional assumption
on the distribution of the residual term e¢;, =1,.....n in
equation (2) is needed. Suppose the €;s are independently and
identically normally distributed random variables with zero
means and common variance o"é. The L.S. estimate of fis

W) B = (xx)* xy
=8 + (xx)? xe€

Then

(8) E@®) = 8
var (8) = E [(B-8) (6—5)]
= E[(xx)™" xeex(xx)? ]
= 2 rey -1
o’ (xx)
One sees from (7) that § has a multinormal distribution over a
k-dimensional space with density N, (8, ¢, (x"x)™'). Hence,a

linear function ¢ has a univariate normal distribution with
density N(cB, o2 ¢’ (x x)™' c). The statistic

cﬁ—c’ﬁ

seve (x'x)? ¢

9 t=

will be dlstrlbuted as Student’s -t with n-k degrees of freedom,
where s_ = +/e'e/(n- k) B and e are independently distributed.
We can now compare coefficients of classificatory variables
(e.g. the coeff101ent of the it* income group of one region against
coefficient of the ] income group of another region).By choosing

58



¢ appropriate to our hypotheses on the §’s, we can make the tests
on the coefficients. Letc’ = (0,...,0,1,0,...,0,-1,0,...,0),
the jth element is 1 and the jth element is -1 and zeros in other
places This is equivalent to testing H: B;-B;= 0 or f; against

: B; # B; The probability is a that 1) > t aj2,n-k, where
ta,,z n- kis the tabulated value of t with n-k d.f.

Concluding Remarks

The formulation of the general linear model given in (1)
includes an assumption that the domain of the explanatory va-

riables are real numbers and results derived therefrom apply also to
the mixed case which Dr. Encarnacién deals with in his paper.

Apart from the problem that units of measures in the va-
riables are not easily interpretable when compared, working with
correlations among variables are of frequent interest because
the square of multiple correlation coefficient

(10) _
R20 1 2; LI k = 1 _‘_2(-2
oy

explains directly the proportion of total variation in the depen-
dent variable Y explained by variables X, . . ..,X}. Occasionally
also the available data we have on the problem are expressed in
correlation coefficients. Alternatively, the §’s in the linear regres-
sion model of equation (2) can be derived from correlations
among the variables. We can compute the simple (zero-order)

correlations between the variables Y, X, . ., X}, and display them
in matric form R = (rj) where Toj (j=1, ..,k) denotes the
correlation betweeny and X;jand Ti=1(1=0,..., k). Then the
least squares regression Y = By;x; + ....* B,.x, . where Y,
Xy,...., X), are deviates of variables Y, X, ....,X, from their
respective means would have coefficients
(11) ;oo % Ry
! siRoo

where R(pj and R, denote the co-factors of "y; and ryq in the
matrix R, respectively, and s,,and $; are the respective standard
deviations of Y and X An alternative expression for the least
squares regression is

(12) Kgq +R01 B R




- ~ 1y - ’ . N . 3
fhe residual sumn of sguares X 2° = e‘e may b2 expressed as
5 % [ Fy
~3; £
b <~ - T T T
Tj

where B

M R ellud
(14; -
-y

TR, OIRE s

Matliy o 3inos

WOt WOy s
Al
Iy

The oniv thing left to relate equations (11 and (12) to Dr
Encamacion’s model is to determine the standard deviations and
correlations of the discrete variables. Note that the classificatory

variable X; has mean P, the proportion of individuals in the jt”

ciass Its varlance is D (1-p,). The correlation between X; and X,

10 the same class is (c¢.i.

{,ramei 53

PRl

\L.’i
X&3 3. s ¥
? _ 3 -
N {iewn, i-n
"'"‘9;‘ o EFeote FWeN v ;1 “f  pracsiiieate apighy’
= Cira e 2ot Froan 0 O CiASssICATOTY varialii s
= e Yo e ~ smAivicdnels 3 . <. . 5
Asgume toal the s of n individuals in the sample belony .-

2
£

3

i

3

et the soousnes 91 values of the continuous variacle w in o
b ooraun e cenared 7 1 4 The nagirs of values '?T{ o oty
; ErouUn o8 Genoicd oy W, y . L€ PALrs 01 Values Ol A &
A and ther devigne, 07
73 7'l SN,
i Siims
X i 5 0 v
rr 1, 45 i
3 B Bt R
P
Dieviaze
- _",r! S ﬁ F -4 bigect. 4
o fw i Vi v — & (W, - Dy
r{ fadey -5 i -
T < . o i T oy :
o LT I=p) i~ w DU — 1Y
! _ v

6(.



U n
L Eu] -p

w; + p(n—-vw
n v

1

- (1-p) [ £ w,
1

+ 4=

U v U 1 r v _
=Yw,-pYw,—pXw +p° Tw—p [Tw—L w;] + p(n—v)w

This easily simplifies to

(16) n v n
% x; W, =21: wi“p(§ w;)
since " n
pzfi,‘ w, = pow andp % w; = pni

The simple correlation between x and w is

(17) r =

xw

VB,

where Sy = \/f: (w; - w)* /(n-1andq =1-p
1

Reference

H. Cramer: “Mathermatical Methods of Statistics”, Princeton
University Press, Princeton. N.J., 1946
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RELATIVE CONTRIBUTIONS OF MIXED VARIABLE TO THE
VARIATION OF A REGRESSAND

Burton T. Onate, Ph. D.
Discussant

Being the last discussant, I assume that Drs. Parel and Mijares
would be able to cover perhaps 90 per cent of what should be said.
But least squares and regression is a broad field and my paper will
deal on their theoretical foundations. The four methods of estima-
tion in a general linear form are (i) ordinary least squares, i (ii)
generalized least squares, (iii) maximum likelihood and (iv) best
linear unbiased estimator (blue). Their equivalents are indicated
depending upon the assumptions made.

Two well known points are worth mentioning, namely; (i)
least squares estimation does not pre-suppose any distributional
properties of the e’s other than finite means and finite variances;
(i) maximum likelihood estimation under normality assumptions
lead to the same estimator, b, as generalized least squares; and
this reduces to the ordinary least squares estimator & when V=d2]
Therefore, one could see that the estimation procedures will
require the use of some transformations which essentially was
applied by Dr. Mijares to derive the estimators, and the variance
and co-variance matrices. These results of Dr. Mijares could be
compared with those given in the paper under discussion. Existing
computer programs should be tested for ‘‘integrity’’ and using the
ramifications indicated in Mijares’ discussion paper.

A survey on the ‘“Method of Least Squares’’ has been con-
ducted by S. L. Harter which appeared in several issues of the
International Statistical Review of 1974-75. Harter divided this
era into four parts, (I) The Pre-Least Squares, (II) The Awakening,
(III) The Modern Era I and (IV) The Modern Era II. A subject
index to the references arranged in alphabetical order of the Code
Letters was used to classify more than 5,000 papers/authors. The
paper under review could fall in II, III and IV.

The uses of code and dummy (0, 1) variables are illustrated
in the Philippines by the National Census Statistics Office indi-
cators on income (salary). One would see that the code used
would be called classificatory variable as the level and the cate-
gory inside as the factors and inside the factor as level. In occu-
pation, they have developed for example codes 1, 2, 3, 4, 5, 6. One
criticism is that one cannot use the values because no relationship
exists in terms of occupational status. And to get away from this
problem, so called dummy variables are used. Another example is
education as a factor (page 5) and there are many levels under
education (factor). Here, there is some kind of order but even then
this order is in terms of educational status. Again, dummy va-
riables would be useful.
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(2) Generalized least squares

(3)

On assuming that the variance-covariance matrix
of e is var (e) =V, this procedure involves minimizing
(y =Xb) 'V (y = Xb)with respect to b which leads to

X'V X)XV oy,

= ¢?], the generalized and the ordinary least

I

b
When V
squares estimators are the same: b = B.

Maximum likelihood

With least square estimation no assumption is made
about the form of the distribution of the random error
terms, which are represented by e. With maximum like-
lihood estimation some assumption is made about this
distribution (often that it is normal) and the likelihood
of the sample of observations represented by the data is
then maximized. On assuming that the e’s are normally
distributed with zero mean and variance-covariance
matrix V, i.e., e ~ N(o, V), the likelihood is

= (2n) 12N V12 exp [-12(y-Xb) V' (y—Xb)].

Maximizing this with respect to b is equivalent to solving
d (loge L)/3b =0. The solution is the maximum like-
lihood estimator of b is

b= (X'V X)XV,

the same as the gen;ralized least squares estimator. As
before, when V = ¢*I, b simplies to b. The estimator
b is the maximum likelihood estimator, if we assume
that

e~ N0 o ]).

Two well-known points are wortlk mentiorning about
these estimators. First, least scuares ss7imation does not
pre-suppose any distributionai proczriies of the e’s
other than finite means anc firite vuriances. Second
maximmum likelihood estirnation umder | normality
assuraptions lead to the same estiraizior, b as gene-
ralized least squares: and this recuce: 1o fhe ordinary

least squares estimator b when V =¢% 1,



(4) The best linear unbiased estimator (b.l.u.e.)

For any row vector t’ comformable with b the scalar
t’b is a linear function of the elements of the parameter
vector b. A fourth estimation procedure derives a best,
linear, unbiased estimator (b.l.u.e.) of t’h.

The b.lu.e. of t'b is t (X'V1X)1X'V-1y, and its
variance is

v(b.lLue. of t'b) =t (X'V1X)1¢.

From among all estimators of ¢’k that are both linear
and unbiased the one having the smallest variance is
t'(X'V1X)!'XV1'y; and the value of this smallest
variance is t (X' V! X) ' t.

3. In view of this equivalence, it may be worthwhile to use the
results for the Ordinary Least Squares Method and apply the
suggested transformation in reducing the original x, z, u, and v
to N(0,1) instead of N(0,I0?). Another suggested theoretical
framework is the Principal Component Method.

Survey on Method of Least Squares

4. H. Leon Harter (1974, 1975) wrote a series of articles entitled
“The Method of Least Squares and Some Alternatives”, in the
International Statistical Review (ISR). These series of articles are
summarized as follows:

Part I Introduction, Fre-Least Squares FEra (1632-
18Q4) and Eighty Years of Least Squares (1805 -
1884); ISR {1974) 42, pp. 147-174,
Il The Awakening {1885 - 1945); ISR (1974)
42, pp. 235 - 264, 282,
III The Modern Era (I) (1946 - 19€4}; ISR (1975)
43, pp. 1-44.
IV The Modern Era {(II) (19€5-1974); ISR (1975)
43, pp. 125-19G: ISR (1875 423, pp. 273-278
(Addendum).

A Subject Index to the refevences arraaged in alphabetical order
of the Code Letters was also maae available {sez Appendix Table
A). A total of 148 Code Letters was used to classify more than
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Highest Grade Completed (Eaucation:

5,000 authors/papers. The paper under review could be classi-
fied under one or more of the Code Letters presented. If not, we
could add a new Code Letter.

Uses of Codes and Dummy (0.1} Variablez

5. An alternative analysis known as regression on dummy (G.1
variables has certain advantages but it may introduce into tne li-
near model the problem of not of full rank. The NCSO uses codes
in the presentation of detailed data on labor force, income and
expenditure characteristics of household sampled. The regres-
sion of income (salary), expenditure and investment of sampled
families on dummy (0.1) variables' may include class of work-
er (occupation), education and other characteristics which are
coded: Examples of these codes are as follows:

Level/Class of Worker (Occupation) - Factor

1 - Worked for private employer

2 - Worked for government/government corporation

3 - Self-employed without any paid employee as de-
fined in “4”’ :

4 - Employer in own family-operated farm/business
(with one or more regular paid employees or one or
more hirec emploveszs most of the weeks of the last
quarter in operatior..

5 - With payv on own family-operated farm or business

€ - Without pay on own famiiv-operated iarm or business

Coliege Graduate

- Factor Level eve;
0¢ — No grade completec 32— 1st year
Elemeniary ¢%  — 2nd year
11— 1st grade dc — 3rd year
12 — 2nd grade 84 — 4th year
13 — 3rd grade 3¢ — bth year
14 — 4th grade or higher

158 — 5th grade

16 — 6th grade and Tth grade
High Schoo!

21 — 1st year

22 — 2nd year

23 — 3rd year

24 — 4th year

]Searle, S.R. Linear Models.
John Wiley & Sons, Inc.
N.Y. 1971
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The occupational and educational codes may be collapsed into
3 or 4 categories. One question is, ‘‘How can Occupation be
Measured”’. One possibility is to measure it by the code numbers
1, 2, 3, 4, 5, 6. An inherent difficulty, however, occurs with the
definition of x as a code number to measure occupational status.
Although the six (6) categories of occupation or class of worker
represent different kinds of occupation, the allocation of the
numbers 1 to 6 to these categories as measures of occupational
status may not accurately correspond to the underlying measure
of whatever is meant by occupational status. The allocation of
the number codes is, therefore, quite arbitrary. By giving a self-
employed person an x-value of 3, we are not really saying that he
has three times as much status as worked for private employer
(x = 1). But in terms of the model, what we are saying is that
E(investment (i) or Income (/n) of private employer) = bo + b1
E( (i) or (In) of self-employed) =bo + 3b]
Thus, allocating codes to the different categories is not entire-
ly justified so far as the suggested model is concerned. Such cate-
gory codes are also used in many characteristics of interest such as
education, management level, malnutrition, source of raw ma-
terial, treatment and plant location in an industrial process, etc.
This problem on code number is avoided by using the technique
of regression on dummy (0,1) variables. Estimation procedures
as illustrated above will immediately imply that a sound and
scientific sample is drawn from the universe and from this sam-
ple, estimates are made of the parameters in the linear model.
Even if the sample is drawn on a sound and scientific manner, it
would be extremely difficult to generate equal number of data
or the so-called balanced data. More often than not, there would
be unequal numbers of observations in each category or sub-class
including perhaps some categories with no observations at all.
This situation is called unequal numbers data, unbalanced data or
“messy’’ data. Some difficulties will be met in the analysis.

6. In studying the effects of occupation, education or mal-
nutrition, on investment or income behavior, we are interested
in the extent to which each category of each variable is associated
with investment. To acknowledge the measurability of the va-
riable and the associated arbitraries or subjectivity in dealing on
their categories, the concept of ‘““factor’ and ‘‘level” may be
introduced. The word ‘“factor’’ denotes the occupation, education,
malnutrition which in turn are divided into ‘levels’’. Examples
were given earlier. The ‘““factor’” cannot be measured precisely
by a cardinal value while the word ‘‘variable’’ is reserved for
that which can be measured. Thus, investment, income or salary
are variables. Note that each person falls into one and only one
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occupational or educational level to which he belongs to. Let the
corresponding x take the value unityv (1) and let all other
x’s for that person to have a value of zero (0). Note that in the
model of the paper under review, there is a mixture of both dum-
my (0,1) and measurable variabies simiiar to y. Care must be
taken to insure that the resuitant X matrix is of full rank.

Sampling Variation and Resultant Distribution

7. Selected indicators will illustrate the level of and distribu-

tional property of poverty indicators though the major periods
in the project cycle. i.e.,

t, = prior to or at appraisal time,
tpe = at completion time or at post-evaluation
tfg = at full development, and

te at end of project life.

Chart A. Probability Distributions and Lorenz Curves of
Indicators from ARD Projects.
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Some of the indicators are production oriented. They are, how-
ever, related to poverty indicators such as ownership, size of land
and yield, employment and labor inputs, etc. All of the indicators
are skewed to the right showing extreme inequalities at the begin-
ning of the project life (t, or tpe) except perhaps the data on price
or value of paddy. Chart A shows empirically how the Project
Benefit Monitoring and Evaluation System (PBMES) will be able
to measure and illustrate the level and distribution of each poverty
indicator which is relevant to the project site.! These distributions
could serve as framework in the sampling procedures and to the
levels of variation in the V matrix on a time series.

1Oflate, B.T. Benefit Monitoring and Evaluation System as a Component
of ARD Project Design. ADB. 1981

Appendix Table A

METHODS OF LEAST SQUARES AND SOME ALTERNATIVES
(H. LEON HARTER)

Glossary of Code Letters

AC Arley’s criterion (for rejection of outliers)

AD Average (absolute) deviation

AE adaptive estimators

Al Adichie’s estimators (of regression coefficients)
AM arithmetic mean

AR Anscombe’s rules (for rejection of outliers)

AS average slope (of regression lines)

AT Andrew’s tests (for rejection of outliers)

AV average (all types)

BC Bertrand’s criterion (for rejection of outliers)
BF Bartlett’s (method of) fitting (straight lines)
BM Brown-Mood estimators (of regression parameters)
BT best two (out of three)

CC Chauvenet’s criterion (for rejection of outliers)
CD censored data

CH cliff hangers

CM Cauchy’s method (of interpolation)

CT (Bliss)-Cochran-Tukey criterion (for rejection of outliers)
CU Cucconi’s criterion (for rejection of outliers)
DA discard averages (trimmed means)

DC Dixon’s criterion (for rejection of outliers)

DH differences at half range
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dispersion (measures of)

Quesenberry-David criterion (for rejection of outliers)
equal areas (under joint p.d. curve) (Laplace’s ‘“‘most advantageous
method”’)

empirical Bayes approach (to outliers)

van Eeden estimators (of location parameters)
Edgeworth’s modification (of Stone’s second criterion)
extremes (largest and smallest values in sample)
Ferguson’s criterion (for rejection of outliers)

folded medians

Gastwirth estimators

Glaisher’s criterion (for rejection of outliers)

Gini’s mean difference

geometric midrange

geometric range

geometric mean

generalized Pitman estimators

Goodwin’s rule (for rejection of outliers)

Grubbs’ criterion (for rejection of outliers)

Hodges’ alternative (to Hodges-Lehmann estimator)
Heydenreich’s criterion (for rejected outliers)

Harter’s estimators (1972)

Hogg's revised estimator (1972)

Hodges-Lehmann estimator

harmonic mean

Hogg’s estimator (1967)

Hogg’s estimators based on Q statistic.

Hulme-Symms alternative (to the rejection of outliers)
Huber’s estimator

Harter’s regression estimators with variable boundaries
Irwin’s criterion (for rejection of outliers)
interquartile range

Jeffrey’s alternative (to the rejection of outliers)
Jureckova’s estimators (of regression coefficients)
Jorgenson’s estimators

Kudo’s criterion (for rejection of outliers)

Kraft-van Eeden estimators (of location parameters)
Kendall’s tau estimator (Sen)

Laurent’s analogue (of Thompson’s criterion)

largest (absolute) deviation

L-estimators (linear combinations of order statistics)
least (sum of absolute) first (powers) (Laplace’s ‘“method of situa-
tion”’)

least number of deviations (least sum of zero powers)
least (sum of) pth (powers of absolute deviations)
linear regression

least squares

linearly weighted means

method of averages

Merriman’s criterion (for rejection of outliers)

median

M-estimator (maximum likelihood type)

method of group averages

Harter’s modified estimators (1973)



MK
ML

MO
MQ
MR
MS
MT
MU
MV
MW
MZ
M4
NC
ND
NM
NR
NS
OM
0S
PA
PC
PD
PL
PM

QA
QD
QL
QM
QN
QR
QT
RA
RC
RE
RL
RM
RR
RS
SA

SB

SC

SD

SH
SI

SK
SM
SN
SP

SR

SW

McKay'’s criterion (for rejection of outliers)
maximum likelihood

minimax method (minimize maximum residual)
mode

median-quartile average

midrange

method of successive differences

median and two other order statistics

Murphy’s criterion (for rejection of outliers)
Moore’s variable-bound estimators

multivariate Wilks’ criterion (for rejection of outliers)
Mazzuoli’s criterion (for rejection of outliers)
maximum (sum of) fourth (powers of p.d.f. of errors)
Nair’s criterion (for rejection of outliers)

median deviation

Newcomb’s method (of treating outliers)
nonlinear regression

Nair-Shrivastava method (of curve fitting)
Ogrodnikoff’s method (of treating outliers)

order statistics

plus approximative methode (most approximative method)
Peirce’s criterion (for rejection of outliers)
dispersion with norm p

location with norm p -

power means

Pearson—Chandra Sekar criterion (for rejection of outliers)
quadratic average (mean)

quartile deviation (semi-interquartile range)
quasilinear estimators

quasi-midrange (quasi-median)

quantiles

quasi-range

quarter technique

range

Rohne’s criterion (for rejection of outliers)
R-estimators (based on rank tests)

robust estimators of location

range method

robust estimators of regression

robust estimators of scale

stochastic approximation estimators
semi-Bayesian approach (to outliers)

Stone’s (first) criterion (for rejection of outliers)
standard deviation (or variance = SD?)

sine estimator

shortest half estimators

successive interval method

skipped procedures

Stewart’s method (criterion) (for rejection of outliers)
Schuster-Narvarte estimator

(method of) selected points

semirange

Student’s rule (for rejection of outliers)

Switzer’s estimator
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S2
TC
TD
TE
TF
Td
™
TO
TR
vC
WA

WH
Wl

WK
WM
WR
wv
YE

12

Stone’s second criterion (for rejection of outliers)
Tippett’s criterion (for rejection of outliers)
transformation of data (and choice of model)
theory of errors

Tukey’s FUNOR-FUNOM procedure
Topsoe-Jensen criterion (for rejection of outliers)
Thompson’s method (criterion) (for rejection of outliers)
treatment of outlying observations

trimming

Vallier’s criterion (for rejection of outliers)
weighted average

Wright’s criterion (for rejection of outliers)
Wright-Hayford criterion (for rejection of outliers)
Winsorization

Walsh-Kelleher estimators

Winsorized means

Walsh'’s rule (criterion) (for rejection of outliers)
Winsorized variances

Yanagawa’s estimator





