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For any given graph G, the cycle graph C(G) has vertices which correspond to 
the chordless cycles of G, and two distinct vertices of C(G) are adjacent if and only 
if the corresponding chordless cycles have at least one edge in common. The graph 
G is cycle-vanishing if the iterated cycle graph C" (G) is acyclic for some finite 
integer n; otherwise G is cycle-persistent. This paper gives a characterization of 
cycle-vanishing graphs , and in particular proves that C3(G) is acyclic if G is cycle 
vanishing. 

Introduction 

All graphs considered in this paper are fmite , loopless and without multiple 
edges. Definitions of undefined terms and notions can be found in [3]. 

A chord in a cycle is an edge joining two non-consecutive vertices in the 
cycle. 

Given a graph G, the associated cycle graph C(G) has vertices which corre
spond to the chordless cycles of G, and two vertices of C(G) are adjacent if and 
only if the corresponding chordless cycles of G have at least one edge in common. 
In particular, if G is acyclic then C(G) is the null graph which we denote by 1/J. 
For example, if G is the graph shown in Figure 1(a), the chordless cycles of G are 
A 1 = 123 1 ,  A 2 = 236542 , A 3 = 456874, and A4 = 2368742 . Using a; to denote 
the vertex corresponding to the cycle A;, the cycle graph C(G) is shown in Figure 1 
(b). 

(bl C(G) 

Figure 1 . A graph G and its cycle graph C(G). 
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If O' (G) denotes the n-fold cycle graph of G, then G is a cycle-vanishing 
graph if en (G) = 1/> for some positive integer n and otherwise G is a cycle-persistent 
graph. For example, if G is the graph in Figure l (a), then c2(G) = K2, the complete 
graph of order 2, and C3(G) = </>; hence G is cycle-vanishing. It is easily verified that 
C(K4 ) = K4, so the complete graph of order 4 is cycle-persistent . The problem of 
classifying cycle-vanishing graphs is the main concern of this paper. 

The idea of cycle graph is motivated by the concept of line graph of a graph 
(5] .  This is the graph L(G) whose vertices correspond to the edges of G and two 
vertices are adjacent if and only if the corresponding edges have a vertex in com
mon. Perhaps the idea of clique graphs [ 4] was also motivated by the same con
cept. 

Some Basic Properties 

If H is any subgraph of G, the induced subgraph H is the subgraph with the 
same vertex set as H and such that two vertices in jj are adjacent if and only if 
they are adjacent in G. If fi = H, then H is simply an induced sub graph of G. 

Lemma 1 .  If C is any cycle in a graph G, then each edge of C belongs to a chord less 
cycle of G contained in the induced sub graph C. 
Proof If C is chordless, then C =C and the lemma holds. So suppose C has chords. 
Then C has order n ;;;. 4, and we may suppose the lemma holds for all cycles of 
smaller order in G. Any chord of C divides C into two cycles C' and C" each of 
order less than 11. Since all chords of C belong to C, then C' and C" are subgraphs 
of C. The lemma therefore follows by induction on n. 

Lemma 2. If H is an induced subgraph of G, and C is any cycle in H, then C is 
chordless in H if and only if it• is chordless in G: 

Proof If  C � the subgraph of G induced by C it is also the subgraph of H induced 
by C, since H = H. So the lemma follows. 

Lemma 3. If G has an induced subgraph which is cycle-persistent, then G is cycle
persistent. 

Proof By Lemma 2, if H is any induced subgraph of G then C(H) is an induced 
subgraph of C(G). If H is cycle-persistent, it follows that cn(H) is never the null 
graph, so C" (G) is never null, whence G is cycle-persistent . 
Theorem 1 .  If the graph G contains an edge which belongs to at least four chord
less cycles, then G is cyle-persistent. 

Proof Let H_ be a sub graph of G containing four chordless cycles with a common 
ed�. Then H contains the same four chordless cycles, and correspondin� to them 
C(H) contains a sub graph K4 . Since K4 is cycle-persistent, it follows that H is cycle
persistent, and hence G is cycle-persistent, by Lemma 3.  

A bridge of a graph G is  an edge which does not belong to  any cycle in G. 
The bridge-free spanning subgraph of G, denoted by G, is the graph obtained from 
G by deleting all its bridges. 
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Lemma 4;.....A graph G is cycle-persistent if and only if its bridge-free spanning 
subgraph G is cvcle-persistent. 
Proof The cy�les of G are precisely the cycles of G, so C(G) = C(G), whence the 
lemma follows. 

This lemma shows that in order for G to be cycle-persistent , it is necessary 
and suftlcient for some component of G to be cycle-persistent. We can sharpen 
this result. Recall that a cut vertex of a graph G is any vertex v such that the 

graph G-v, induced by all vertices of G except v, has more connected components 
than G has. A block is a connected graph which has no cut vertices, and a block 
of a graph G is a maximal connected subgraph which is a block . In a b lock of order 
at least 3, any two vertices lie on a common cycle. 

Theorem 2. Lee G be a co11nected bridgeless graph of order at least 3. Then C(G) is 
connected 1[ and only if G is a block. 
Proof First a5sume that G is a block. Since its order is at least 3, it contains a 
cycle. I f  G is a cycle , C(G) = K 1 so C(G) is connected . Now suppose G con tains 
more than one cycle , and therefore at least two chordless cycles. Let A, B be two 

chordless cycles, with corresponding vertices a, b in C(G). If A, B have a common 

edge . then a and b are adjacent .  If A, B have no common edge they are joined by 
a path P, since G is connected. Let us assume that P has order at least 2 (P may be 

of order 1 but this case is easier to handle). Let u, v be the end vertices of P. with u 
in A and v in B. Let w be adjacent to u in A, and let x be adjacent to u in P (x may 
coincide with v). Since G has no cutvertices there is a path Q with end vertices w 
and x, which does not pass through u (Figure 2). We may assume Q has the least 
order among such paths. Witit the path wux, the path Q forms a cycle C. If C has 

chords, the construction ensures that any chord it bas must be incident with u. 
Thus whether C is · chordless or not, there is a sequence of chordJess cycles which 
begins with A and ends with a cycle C' containing the edge ux , and consecutive 
cycles sl1are a common edge (which happens to be incident with u). The subpath 
of P which joins C' and B has smaller order than P. Thus, iteration of the construe-

.... .... .... ', a 
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figure 2. ConsLiuction fo r the sufficiency part of Theorem 2. 
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tion yields a sequence of chordlesss cycles A = A  1 ,  A 2 , . .  , An = B with the proper
ty that consecutive cycles have a common edge. Conscquently;there is a corre
sponding path a = a 1 , a2 , . . .  , ian = b in C(G) , whence C(G) is connected .  

Conversely, assume thaC G is not a block. Since G is connected and bridgeless 
each of its blocks has order at least 3. Since G is not a block, it has at least one cut 
vertex ,  say x. Therefore x is adjacent to vertices u, v, w such that u, v and x lie on 
a chordless cycle A and w lies in a component of the subgraph induced by G - x 
different from the one which contains u and v (Figure 3). The edge xw lies in 
some chordless cycle B. Any sequence of chordless cycles A =A 1 , A 2 , . . .  , An = B 
such that no two consecutive cycles are disjoint must be such that some pair shares 
only the vertex x. Thus, if a and b are the vertices of C(G) corresponding to A and 
B, there is no path between them, so C(G) is disconnected. 
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figure 3. Construction for the necessity part of Theorem 2 .  

Corollary . For any graph G, the connected components of C(G) are the 
cycle graphs of the blocks of G with at least 3 vertices. 

Characterization of Cycle-Vanishing Graphs 

A cycle C intercepts a tree T if the intersection of C and T is precisely the set 
of end vertices of T For convenience, suppose C is a cycle embedded in the eucli
dean plane: two paths intercepted by C are parallel if they can be drawn in the 
interior of C so that they are internally disjoint (though they may have end vertices 
in common). Two paths intercepted by C are skew if they are disjoint but are not 
parallel. These definitions are illustrated in Figure 4. 
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Figure 4. A family of paths each intercepted by the cycle C. The paths P, QS, T. U, V and W are 

pairwise parallel; the paths p and QR are skew; the paths QR and QS are neither parallel 

nor skew. 

Lemma 5. A graph G contains a cycle which intercepts two skew paths if and on(v 
if it contains a cycle which intercepts a tree with three end vertices. 
Proof This is simply a matter of two ways of describing the same configuration. 
Let S, T, U be the three branches of a tree with three end vertices ; let the paths 
P, Q, R join the end vertices of the tree to fonn a cycle which intercepts the tree, 
so that P joins the end vertices of ST, Q joins the end vertices of TU, and R joins 
the end vertices of SU (Figure 5). 

a 
p 

Figure 5. The configuration for Lemma 5. 

Then P, T. U, and R form a cycle which intercepts the skew paths Q and S. 
Let C be a cycle which intercepts three parallel paths P, Q, R. Then Q sepa

rates P and R (with respect to C) if C contains paths U and V such that Q joins 
U �nd V, and PUR V is a cycle which intercepts Q {Figure 6). For example, note 
in Figure 4 that T separates P and U, but U does not separate T and V, relative 
to C. 
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---�--� 
u 

Pigure 6. Relative to C, the paths P and R are separated by the path Q. 

c 

Two paths intercepted by a cycle C are C-independent if they are separated 
by some path intercepted by C; otherwise they are C-dependent. An ideal of C 
is a maximal family of C-dependent paths. For example, in Figure 4 an ideal of C is 
I T,U, V, Wf .  
Theorem 3. If C is a cycle-vanishing graph, it contains no cycle which intercepts 
two skew paths. 
Proof. We shall prove the contra positive of the theorem . Let C be a g(aph which 
contains a cycle that intercepts two skew paths. By Lemma 5 ,  G contains a cycle 
C which intercepts a tree T with three end vertices u, v, w (Figure 7) . 

" 

z 

Figure 7. A cycle C intercepting a. tree T with three end vertices u. v, w. 
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In Figure 7 ,  we show the cycles X ,  Y, Z each being formed by a pair of 
branches of T and a path in C We can assume that T has the least number of edges 
•among all trees with three end vertices intercepted by some cycle in G. Further
more, among all cycles intercepting T. we assume that C has the shortest length. 
Then the subgraph X induced by X does not contain edges like the ones indicated 
by the dashed lines in Figure 7. This condition also holds in the induced subgraphs 
Y and .i..Hence, any chord in X, Y, or Z is incident with the vertex p common to 
the three branches of T. Therefore there is a sequence of chordless cycles A 1 .  
A 2 • . . .  , An,  A 1 in G such that consecutive cycles share a common edge (which 
happens to be incident with p). This sequence of chordless cycles in G correspond 
to the cycle a1 a2 . . .  ana1  in C(G) where ai is the vertex corresponding to Ai. 
! Let ei be an edge common to C and Ai (i = 1, 2, 3). By �mma 1 ,  ei lies in a chord
less cycle, say Bi, contained in the induced subgraph C Clearly, Bi is not equal 
to any cycle Ai. Let bi be the vertex J:n C(G) corre�onding to Bi. Then ai and bi 

' are adjacent in C( G) (Figure 8). Since C is a block, C(C) is connected by Theorem 2 . 

....... ' ' ' ' \ \ I 
,J..- _ _ _ ... "'a 

Figure 8 .  A cycle a 1a2 . . .  a11a 1 in C(G) and three outside vertices b 1 ,  b2 ,  b3 adjacent to a 1 ,  
a2 and a3 respectively. 

Therefore there exists a path P in C(C) joining b1 and b2 . Also, there exists a 
path Q in C(C) joining b3 to P (Figure 8). The paths P, Q and the edges Oibi (i = 
I ,  2, 3) form a tree with three end vertices a1 a2, a3 , intercepted by the cycle 
a1a2 . . .  ana 1 .  Our argument actually shows that for each positive integer n, 
cn(G) contains a cycle (intercepting two skew paths). Hence G is not cycle-vanish
ing. 

A path of order at least two in a graph G is reflexive if its end vertices are 
adjacent in G otherwise it is i"ejlexive. Note that a path of order 2 is necessarily 
reflexive ; an irreflexive path has order at least 3 .  

Theorem 4 .  Let G be a graph composed of a CJ cle C and a family p of parallel 
intercepted paths. Then G is cycle-vanishing if and only if it has the following 
properties: 
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( 1) A ny two i"eflexive paths of p are separated by at least two chords in p. 
(2) Any ideal of C consisting of at least 4 paths contains only reflexive paths. 

Proof First assume that G is cycle-vanishing. Let Q and R be two irreflexive paths 
in p, and suppose they are separated by at most one chord in p. Let U, V be the 
paths in C forming a cycle C' with Q and R Then C - C' consists of two edge
disjoint paths Q', R '  such that A = QQ' and B = RR ' are cycles (Figure 9). By 

Figure 9. A cycle C = Q 'UR 'V intercepting two irreflexive paths Q, R separated by at most one 
chord E. 

�mma 1 ,  there exists a chordless cycle A 1 containing Q in the induced subgraph 
A. Similarly, there exists a chordless cycle B1 containing R in the induced subgraph 
B (Figure 1 0). 

Figure 10. An induced subgraph consisting of two chordless cycles A 1 ,  B 1 and a cycle QUR V 
with at most one chord E. 
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In case Q and R are not separated by a chord, then the induced subgraph in 
Figure 10 has a cycle graph of order 6 and is shown in Figure 1 1  (a) if U or V has 
order at least 2, and Figure l l(b) if both U and V have order 1. In either case, 

( a )  

Figure 1 L Cycle graph o f  a n  induced sub graph o f  G. 

we have a cycle which intercepts two skew paths. It follows from Theorem 3 that 
G is cycle-persistent. In case there is a chord E which separates Q and R. then E 
lies in 4 chordless cycles. By Theorem 1 ,  G is cycle-persistent. . 

Let K = I Q1, Q2, . . .  , Qk l be an ideal of C with k 0 ;;,.  paths. Let R 1, R2, 
. . .  , Rk be the edge-disjoint paths in C whose end vertices are those of Q1, Q2, 
. . .  , Qk respectively and let Ai ( i = 1, 2, . . .  , k) be the cycle 0Ri (Figure 1 2  ) . 

Figure 1 2. An ideal K =- l Q1 , Q2 , . . . •  Qk \ of C. 

By Lemma I ,  there exists a chordless cycle containing Qi in the induced subgraph 
A;: We may then assume, without loss o[ generality that each Ai is a chordless 
cycle. Let the path Si be defined as Qi if 0 is irreflexive, and otherwise it is the 
edge joining the end vertices of 0. 

Now suppose that there is an irreflexive path in K, say Qi. Let A be the cycle 
formed by Q1, S2 , S3 , . . . , Sk and some paths in C; let B be the cycle formed by 
R 1, S2, S3 , . . .  , Sk and some paths in C. Then A, B are chordless cycles having 
some common edges. Let a, b be the vertices in C(G) corresponding to A, B; let ai 
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be the vertex in C(G) corresponding to Ai (i = 1 ,  2 ,  . . .  , k). Then ai is adjacent to 
both a and b since the path Si is common to A, B and Ai. Therefore we have at least 
4 chordless cycles abaia (i = 1 ,  2, . . .  , k) in C(G), each containing the edge ab. 
By Theorem 1 ,  C(G) is cycle-persistent, and so G is. This is a contradiction, and 
hence property (2) must necessarily hold. 

We now prove the converse of the theorem by induction on the cardinality 
of p. It is easily verified when I p I ,.;;;; 2. Let I p I =  n ;;;;. 3 and assume that any graph 
consisting of a cycle and a family of less than n parallel intercepted paths satis
fying properties ( 1 )  and (2) is cycle-vanishing. Consider the following two cases: 

Case 1 .  There are no chords in p. If each path in p is reflexive then C(G) is 
the complete bipartite graph K 1 n ,  which is acyclic. Therefore G is cycle-vanishing. 
If there is an irreflexive path in 

'
p, then by property ( 1 ) , there is exactly one such 1 

path, say S (Figure 1 3). Because of property (2) we must have r ,.;;;; 2, s ,.;;;; 2 and 

figure 13 .  A cycle C intercepting reflexive paths Qi. Ri and exactly one irrcnexive path C. 

hence r + s ,.;;;; 4. Since n = r + s + 1 ;;;;. 3, we also have r +  s ;;:;. 2 .  So C(G) is one of 
the graphs in Figure 14 ,  each of which is cycle-vanishing. Hence, G is cycle-vanish
ing. 

figure 14 .  Cycle graph C(G) for Case J .  

Case 2. There is a chord in p .  Let E be a chord in p .  Split G into subgraphs 
Gi (i = 1 ,  2), each consisting of a cycle Di passing through E and a family Pi of  
parallel intercepted paths (Figure 1 5). Properties ( 1 )  and (2) are inherited by  each 

Pi from p. By induction hypothesis each Gi is cycle-vanishing since lpi l < lp l. By 
Lemma 1 ,  each Gi contains at least one chordless cycle passing through E. By 
Theorem 1 ,  each Gi contains 2 chordless cycles passing through E. Furthermore, 
if one G. contains 2 chordless cycles through E, the other contains only 1 .  I 
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Figure 1 5. Splitting of G along the cho rd E. 

If G1 , G2 each contains only one chordless cycle through E then the cycle 
graph C(G) is composed of C(G �), C(G2 ) and one additional edge joining them. 
Therefore, C2(G) = c2(G1 ) u C-)(G2), the union being disjoint. By induction 
hypothesis, it follows that G is cycle-vanishing. 

Suppose G1 has 2 chordless cycles A, 8 which pass through £. Then we may 
assume without loss of generality that A contains an irreflexive path Q of p 1 .  
Jf B contains any chord of p 1 ,  at  most one of  them is  in A, for E� Q and any such 
chords form an ideal of C and as Q is irreflexive, property (2) limits the size of this 
ideal to at most 3 .  If A !:::. B denotes the chordless cycle which is the symmetric 
difference of A and B, it similarly follows that A !:::. B contains at most two chords 
of p 1 ,  for Q together with such chords forms an ideal of C. Let R represent a chord 
of p 1 in A !:::. B. Separate G1 into subgraphs H1, H2 , H3 and G0 such that Go is 
the subgraph containing B and Q while H1 , H2 , H3 intersect Go in R 1 . R2 and R 3 
respectively {Figure 1 6). In the general case, if any of the chords R 1 is absent,  
so is  the related subgraph H;. 

Since R; is already contained in two chord.less cycles in G0 , then there is a 
unique chordless cycle Z; in Hi passing through R;. Likewise G2 contains a unique 
chordless cycle X passing through E. Let K be the subgraph of the cycle graph 
C{G) induced by the vertices corresponding to A, B, A !:::. B, X, Z 1 , Z2, Z3 . 

Figure 16.  The graph G. Q is an irreflexive path while E is a  chord. 
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Then the cycle graph C(G) is shown in Figure 1 7 .  Clearly. C2(G) is the disjoint 
union of the five components C2(G2), c2(H1 ), C2(H2), C2 (H3) and C(K). The 
first four are cycle-vanishing. by hypothesis. The last has only two chordless cycles 
so is cycle-vanishing. Thus G is cycle-vanishing. 

Figure 17. The cycle graph C(G). 

Corollary. Let G be a cycle-vanishing graph. The each subgraph of G consisting of 
a cycle and a maximal family of parallel intercepted paths satisfies properties ( 1 )  
and (2) o f  Theorem 4. 
Proof Let G0 be a subgraph of G consisting of a cycle C and a maximal family p 
of parallel intercepted paths. If x and y are vertices in G0 which are adjacent in 
G but non-adjacent in G0, then they must lie in only one path in p and at most one 
of the vertices x and y is an end vertex of this path (Figure 1 8). We add the edge 

c 

Figure 1 8. A subgraph G
0 

of G consisting of a cycle C and a maximal family of p araUel inter

cepted paths. 
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xy and remove the corresponding portion of the path forming a cycle with xy. We 
keep on repeating this process until all the paths in p can no longer be shortened. 
Denote by G 1 the graph obtained from G0 after completing the construction. Then 
G1 is an induced subgraph of G consisting of a cycle C and a family p' of parallel 
intercepted paths which is in one-to-one correspondence with p. Furthennore, a 
path in p' is a chord if and only if the corresponding path in p is a chord . Hence, it 
suffices to prove that G 1  satisfies properties ( 1 )  and (2). Since G1 is an induced 
subgraJ?h of G, c1 is cycle-vanishing by Lemma 3 .  By Theorem 4, G1 satisfies pro
perties ( 1 )  and (2). 

Theorem S. If G is cycle-vanishing graph, then each chordless cycle in the cycle
graph C(G) has length 3. 

,Proof Without loss of generality, we can assume that G is a block. We shall prove 
the theorem by induction on the number m of edges of G. The theorem is easily 
verified when m t;;;; 5. Let m ;;;;. 6 and assume that the theorem holds when the graph 
has less than m edges. 

If G does not contain any cycle with a chord then G either is a cycle or is 
composed of a cycle intercepting exactly one irreflexive path. In both cases, G 
is cycle-vanishing. So we may assume that G contains a cycle C intercepting a chord 
E. Let p be the family of all paths intercepted by C Observe that C U p  = G and 
that there are no skew paths intercepted by C in view of Theorem 3. Split G into 
subgraphs G; (i = 1 ,  2), each consisting of a cycle D; passing through E and a family 
Pi of intercepted paths. By Lemma 1 ,  there is at least one chordless cycle in G; 
passing through E. By Theorem 1 ,  each G; has at most 2 chordless cycles passing 
through E. Furthermore, if one G; has 2 chordless cycles passing through E, the 
other has only 1 . 

In case each G; has exactly one chordless cycle passing through E, then C(G) 
is composed of C(G 1 ), C(G2) and an edge joining them. Therefore any chordless 
cycle of C(G) either is in C(G1 ) or is in C(G2). By induction hypothesis, each 
chordless cycle in C (G;) or is in C(G2). By induction hypothesis , each chordless 
cycle in C(G;) has length 3. Hence, each chordless cycle in C(G) has length 3 .  

In  case G 1 has two chordless cycles A ,  B which pass through E, then G2 
has only one chordless cycle D passing through E If a, b, d are the vertices of 
C(G) corresponding to A B, D respectively, then C(G) consists of C(G 1 ) ,  C(G2) 
and the '-'YCle abda. By induction hypothesis, each chordless cycle in C(G;) has 
length 3. Hence, each chordless cycle in C(G) has length 3. 
Corollary. If G is a cycle-vanishing graph, then c4 (G) = cJ> .  
Proof I f  G is acyclic, C(G) = ell . If G contains cycles and C(G) is acyclic, then 
c2(G) = ell . If C(G) contains cycles, then all chordless cycles of C(G) have length 3 .  
B y  Theorem 1, any edge i n  C(G) can lie in a t  most 3 chordless cycles. Therefore , 
C2(G) either is acyclic or it contains chordless cycles of length 3 which have no 
edges i'l common . In the first case, c3 (G) = (/> and in the second case c3(G) is 
acyclic and so c4 (G) = cJ> .  
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We can now give the main result of this section, which is a characterization 
of cycle-vanishing graphs. 

Theorem 6. (Characterization T1teorem). A graph G is cycle-vanishing 1[ and only 
if it satisfies the following properties: 

( 1 )  G does not contain a cycle intercepting two skew paths. 
(2) G does not contain an edge belonging to at least four chord less cycles. 
(3) For every subgraph of G which consists of a cycle and a maximal family 
p of parallel intercepted paths, any two irreflexive paths in p are separated by at 
least two chords in p and any ideal of C with at least four paths contains only 
reflexive paths. 
Proof First assume that G is cycle-vanishing. Then ( 1 )  follows from Theorem 3 ,  
(2) follows from Theorem 1 and (3) follows from the Corollary t o  Theorem 4. 

Conversely, let G be a graph satisfying properties (1 ), (2 ) and (3) Without 
loss of generality, we can assume that G is a block of order at least 3. We shall 
prove that G is cycle-vanishing by induction on the order n of G. This is easily seen 
to be true when n = 3 or 4. Let G be of order n ;;;;.: 5 and assume that the theorem 
holds for graphs of order less than n. 

If  G does not contain any cycle with a chord then G either is a cycle or is 
composed of a cycle intercepting exactly one irreflexive path. In both cases, G is 
cycle-vanishing. So we may assume that G contains a cycle C intercepting a chord 
E. Let p be the family of all paths intercepted by C. Then G = C U p and there are 
no skew paths in p. Split G into subgraphs G; ( i = 1 ,  2), each consisting of a cycle 
D; passing through E and a family pi of intercepted paths. Properties ( 1 ), (2), (3) 
are inherited by each G; from G and hence G; is cycle-vanishing by hypothesis. 
Just like in the proof of Theorem 5 ,  G; contains at least one and at most two 
chordless cycles passing through E and if one Gi contains two chordless cycles 
passing through E, tl1e other one contains only one. By the same argument used 
in the proof of Theorem 4, G is cycle-vanishing. 
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Norman F. Quimpo, Discussant 

Counting Cycles. The main result in this paper arises from a natural clas.�ifi· 
cation of cycle graphs suggested by the definition itself of a cycle graph . That is, if 
we derive a graph from the cycles of a graph, how many cycles are produced in the 
new graph? The answer is that the number may decrease , remain the same, or 
increase. 

The paper deals with the first situation. 
Regarding the second situation it will be interesting to characterize graphs 

which reproduce themselves in their cycle graphs. Wheels reproduce themselves. 

What other classes of graphs do? 

An example of a graph whose cycle graph has more cycles than the original is 
the following: 

How does the cycle count in the new graph relate to the configuration in the 
original? It seems like a big challenge to prove counting results here . 

Verifying the Usual Properties. Now that a new way of defining a graph has 
been given,  students of graph theory can have a heyday checking the usual proper
ties of graphs. For example, what sort of graph produces a hamiltonian cycle graph? 
What conditions must be present in the original graphs for its cycle graph to be a 
tree, a bipartite graph, a regular graph? When does a graph have a graceful cycle 
graph? Etc., etc . 

As more results about cycle graph pile up, and when the experts move in, we 
shall see the so-called "soft" results lead to "hard" ones. At some point, we can 
expect the key problems for cycle graphs arise. 

Generalizations. The author imposes the restriction of chordless cycles in the 
definition of cycle graphs. Seeing the neat result that he obtained, we can see that it 
has been a good choice. The restriction is natural enough (a K 4 produces a K4 ) 
strict enough to exclude a lot of graphs from the investigation and yet loose enough 
to yield a complex result. 
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However, we see the way to a generalized study. We can either (i) replace the 
chordless condition by another, or (ii) drop it entirely . 

If we drop the chordless condition entirely , then the new cycle graph will 
have the same number of or more edges than the Gervacio cycle graph. It follows 
that any result on cycle-persistence will be preserved while any result on cycle
disappearance will have to be reviewed. For example, consider the following graph 
under chordless or non-restricted conditions. Under the Gervacio conditon, it is 
oyclo-varushlng. With no restric tion, it booom" oyclo-multiplying. 

""W 

Rolando E. Ramos, Discussant 

Basically, Dr. Severino V. Gervacio's paper entitled "Cycle Graphs" is about 
cycles. Cycles are very important in graph theory. In fact, graph theory was dev
eloped from the problem of finding a cycle in a graph. Also, cycles have practical 
applications. One practical application is the so-called Chinese postman problem. 
From a post office, a postman goes from one block to another to deliver mails. 
Afterwards, he goes back to his office . If we represent the post office and the 
intersections by vertices, and tl1e streets between iliem by edges, the postman's 
route turns out to be a cycle. Another application is the travelling salesman pro
blem. Likewise , from a warehouse , a salesman travels from one town to another 
to sell his goods, then he goes back to his warehouse . Again, if we represent the 
warehouse and the towns by vertices, and the roads from one vertex to anoilier 
by edges, the salesman's route becomes a cycle. 

In this paper, Dr. Gervacio first defmes two classes of graphs, namely, cycle
vanishing graphs and cycle-persistent 'graphs. Then he gives necessary and suf
ficient conditions for graphs to be cycle-vanishing or cycle-persistent .  Most of the 
approaches in mathematics are of iliis type. A mathematician first deflnes a collec
tion of objects then he finds objects that belong to the collection. 

As pointed out by Dr. Gervacio, his study of cycle graphs was motivated 
by the concept of line-graphs. line-graphs have theoretical applications and prac
tical applications. They can be used in characterizing flnite projective geometries, 
fmite affine geometries and balanced incomplete block designs. They can be used 
also in solving coloring problems and self-avoiding walk problems. So, I am op
timistic that mathematicians will be able to discover theoretical applications and 
practical applications of these cycle graphs. 
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