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ABSTRACT 

q-l 
We detennine here the automorphism groups of Paley 2- (2q + l,q, -

2
-) designs 

where q is a prime power such that q = I (mod 4 ). 

1. INTRODUCTION 

A special construction of Hadamard 1-designs of Paley type was given by 
N. Ito in [ 3]. Paley .2- and 3- designs are Hadamard 2- and 3- designs, respectively, 
which are derived from Hadamard 1-designs of Paley type [ 4]. The purpose of 
this paper is to detennine the automorphism groups of Paley 2-Designs. The proof 
makes use of a theorem by Carlitz [ 2]. 

2. HADAMARD DESIGNS 

In this section, we present the definition of Hadamard 1-, 2- and 3-designs. 
These concepts are defined and their relationships are expounded in r 4]. 

Definition 2.1 Lett, u, k, A. be positive integers such that u > k > t > 1 and ') ... > 1. 
The pair D = (P, B) is called at- (u, k, A.) design or simply at- design if Pis a 
finite set of u elements called points and B consists of k-subsets of P called blocks 
and every /-subset ofP is contained in precisely A. blocks. 

Definition 2.2 Let P = {I, 2, ... , n, 1°, 2°, ... , n°} be a 2n-set such that n is a 
positive multiple of four. Let B = {a1, a2, ... , an, a~, a;, ... , a~} be a family of 
n-subsets of P, with af = P - ai, I < i < n The pair D = (P, B) is called an 
Hadamard design if the following conditions are satisfied: 

419 



420 TECHNICALPAPERS:M.ATHEMAT/CAL. PHYSICAL. AND ENGINEERING 
SCIENCES DJY/SJON 

(i) Each point is contained in precisely n blocks. That is, D is a 1-design. 
(H) Each pair of points except {i, l00

}, 1 < i < n, is contained in precisely n/2 
blocks. The pair {i, l00

}, for I< i < n, is contained in no blocks. 
(ill) Each triple of points not containing {i, ;o}, 1 S i S n, is contained in precisely 

n/4 blocks . 
. (iv) Each pair of blocks except {ai, a~}, I < i s n, meets in precisely n/2 points. 
(v) Each trio of blocks not containing {a;, af }, I< i < n, meets in precisely n/4 

points. 

Definition 2.3 Let D be an Hadamard l-(2n,n,n) design where n < 8. Let a be a 
fixed block of D. We define the derived design of D with respect to the block a 
denoted by D(a) = (P(a), B(a), as the design whose point set and block set are 
(P(a) =a and B(a) = {pn a; fJE B. fJ~ a, a

0
, respectively. 

It was shown in [4] thatD(a,) is a 3-design called an Hadamard 3-design. 

Definition 2.4 Let D be an Hadamard l-(2n,n,n) design where n ~ 8. Let a be a 
fixed block of D and let D(a) be the resulting Hadamard 3-design. Let i be a fixed 
point of D(a). We define the derived design of D (a) with respect to the point i, 
denoted by D(a,i) = (P(a,i), B(a,i)), as the design whose point set and block set 
are (P(a,i) =a- i and B(a,i) = {pn a- {i}; i E PE B(a)}, respectively. 

From [4], D(a,i) is a 2-design called an Hadamard 2-design. 

3. PALEY DESIGNS 

We present here the construction of Hadamard 1-designs of Paley type 
given by N. Ito in [ 3]. We then show the points and blocks of the corresponding 
Hadamard 3- and 2- designs. 

Let q be a prime power such that q = I (mod 4) and let GF(q) be the field of 
q elements. Let Q and N denote the sets of quadratic residues and non-quadratic 
residues respectively, of the multiplicative group GF(q)*. We introduce a new 

symbol t. Then consider four disjoint copies of GF(q) U {t} ,namely, GF(q) 1 U {t1}, 

GF(q)~ U {t~}, GF(q)2 U {ti}. and GF(q)i U {ti}. For any a E, GF(q), the four 

mappings which map a to a1, a~, a2, ai, respectively are isomorphisms. 

We let 
P(q) 

Pt<t> 
P1(a) 

~(t)" 

fl,_(a) 

-
-
-

-

-

{t1} U GF(q)1 U {t~} U GF(q1)* U {t2} GF(qhU {ti} U GF(q)i; 
{t1} U GF(q)1 U {ti} U GF(q)2; 

{ttl U Q1 + a1 U {a1} U N~ +a; U {t2} U Q2 + a2 U {ai} 
U Ni + ai where a runs over G F( q ); 
{t~} U GF(q}) + U {ti} U GF(qi ); 
{ttl U Q1 + a1 U {a~} U ~+a; U {ti} U Qi + ai U {ai} 
U N2+ a2 where a runs over GF(q); 
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Then we let fJ; (a)C = P(q)- ,B,{a); i = I, 2 and /J,{t)C = P(q)- /J,{t); i = 1, 2. 
Furthermore, we let B(q) = {.B,{t), fJ; (a), /J,{t)c, fJ; (a)C where a runs over GF(q) 
and i = I, 2. 

Then D(q) = (P(q), B(q)) is an Hadamard I -design and is called an Hadamard 
/-design of Paley type [3 ]. 

Consider now the derived design of D(q) with respect to the block fJ;(t), 
denoted by D(/Jf{t)) = (P(/J1(t)), B(jl1(t))). Then P(/J1(t)) = {J1(t) and B(/J1(1)) ={a, 
fJ(a), g(a), ac, {J(a)c, g(a)c} where the blocks 

a = GF(q)2 U{ttJ; 

{J(a)= Q1 + a1 U {ad U Q2 + a2 U {ttl ; 

g(a)= Q1 + a1 U {li} U N2 + a2 U {11}; 

are such that a runs over GF(q) and de denotes the complement of the block o 
with respect to the point set P(ft1 (t)). 

q-1 
Then from Section 2, D(/J1(t)) is an Hadamard 3- (2q + 2, q + 1, design 

2 
which we shall call an Hadamard 3-design of Paley type. 

Next, we consider the derived design of D(/J1(1)) with respect to the point tl 
denoted by D(jl1(t), t1) = (P(/J1(1), 11), B(ft1(t), 11)). We then have P(/J1(t), t1) = 

GF(q 1) U GF(q2) U {ti} and B(/J1(t), 11) ={a', {J'(a), g'(ac} where the blocks 

a' = GF(q)2 ; 

{J'a) = Q1 + a1 U {a1} U Q2 + a2; and 

g'(a) = Q1 + a1 U {ti} U N2 + a2; 

are such that a runs over GF(q). 
q- I 

Again from Section 2,D(ft1 (t), t1) is an Hadamard2- (2q +I), q + I, -design 
2 

which we shall call an Hadamard 2-design of Paley type. 
We note here that these families of Paley designs are distinct from the 

designs of quadratic residue type which some literature also refer to as Paley 
designs. Designs of quadratic residue type have point set equal to GF(q) for q a 
prime power and q = 3 (mod 4). Its blocks are of the form Q + a, where Q 
denotes the set of quadratic residues of GF(q) and a runs over GF(q). Note that 
while the number of points in our Paley designs is 2q + I = 3 (mod 4), 2q + I is 
not always a prime power. The only time when our Paley designs and designs of 
quadratic residues type are isomorphic is when the number of points is 11. 
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4. AUTOMORPWSM GROUPS OF PALEY l-DESIGNS 

In this section, we determine the automorphism groups of the Paley 2-
designs. 

4.1 The case q = 5. 

We first consider the case when q = 5. That is, we consider the Paley 
2-( II ,5,2) design which is isomorphic to the design of quadratic residue type for 
q =II. 

Its automorphism group is of order 660 = 22 x 3 x 5 x II. Its generators 
are 

a - (Ot, It) (3t, ti) (02, 22) (12, 42), 
b - (2t, 4t) (3t, t2). (02, 42) (12, 22), 
c - (It, 4t, 12) (2t, 32, ti) (3t, 22, 02) and 
d - (2t, 22, 02) (3t, 32, t2) (4t, 42, 12) 

The group contains an ll·cycle (It, 2t, 3t, 32, 2~, 42, 0 t, 32, 4t, ti, 02) and 
is transtive. The group was first discovered by Todd [6J. 

4.2 The case q > 5 

Henceforth, the Paley 2-designs we will consider will have q > 9. 
Let q = p", q = I (mod 4 ), where p is prime and n is a natural number. Let 

a, b be fixed elements of GF(q) such that a is a nonzero square. Let D' = (P', B~ 
denote a Paley 2-design. We define 1ta,bi P' - P' such that_ 

1t _. {x- atx~ + b; ifx E GF(q);, i = 1,2; I Sj S n, 
a,bJ' • • 

ti - t2. 

Theorem 4.1 The set G = { na,bJ : a, b E GF(q) is nonzero square, l S j S n} is 
an automorphism group for the Paley 2-designs. 

Proof. Clearly, every 1ta!l!J maps every point of GF(qh to a point in GF(q)2, or 
equivalently, the block GF(qh is fixed by G. 

Nex~, the point~ EQ +.y iff x = d + y for. a nonzero square d. Hence na,bJ: 

x- axpl + b = adpl + aypl + b E Q + (aypl +b). ~bus, the block {Qt + y 1 U 

{yt} U Q2 :+ y2 ] is mapped to the block [Qt + (a1yf1 + bt) U {atyf1 + bt}] U 

Q2 + (a]}'2pJ + b2)] 

Similarly, the point x E N + y iff x = n + y for a nonquadratic residue n. 

Thus, na,bJ: x- ax~+ b =an~+ ay~ +bEN+ (ayPj +b). T~us, the block 

[Qt + Yt U {ti} U N2 + y2 ] is mapped to the block [Qt + (a1yf1 + b1) U {ti} 
U N2 + (aJ)'2pj + b2)]. 0 
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Next, we show that G is the automorphism group of the Paley 2-designs for 
q ~ 9. We fli'St need the following lemmas. 

Lemma 4.2 GF(qh is an isolated block. 

Proof. 
GF(qh has the special property that for any other block a E B', $a blockP 

E B' such that GF(qh nan p =0. That is, note that Va E GF(q), 

GF(qh n (Q1 + a 1 U {a1} U Q2 + a 2) n (Q1 + a 1 U {ti} U N2 + a2) =0. 

On the other hand, if we fix any other block y E B ', then $a E B' such that 

VP E B', we have 
y n an p ~ 0. (1) 

For example, if we choose y = [Q1 U { 01} U Q2], then we can choose a = 

[Q1 U {ti} U N2]. Clearly, in this case, (1) is satisfied. By Theorem 4.1, the block 

[Q1 + a 1 U {a 1} U Q2 + a 2] is equivalent to [Q1 U {01} U Q2]. That is, they have 
the same orbit under the group G of Theorem 4.1 Hence ( 1) is also satisfied by 
blocks of the form [Q1 + a 1 U {a1} U Q2 + a2]. 

If we choosey = [Q1 U {ti} U N2], then we can choose a = [Q1 U { 01} U 

Q2]. Thus, (1) is satisfied. By Theorem 4.1, the block [Q1 + a 1 U {ti} U N2 + a 2] 

is equivalent to [Q1 U {ti} U N2], hence (1) is also satisfied by blocks of the form 

[Q1 + a1 U {ti} U N2 + a2]. L 

Lemma 4.3 ti is an isolated point. 

Proof. The point ti has the special property that for any other point x in GF(q)1, $ 

another pointy in GF(q)2, such that the triple of points {ti x, y} is not contained in 

any block. Note that {ti a 1, a2} is not contained in any block. 

On the other hand, if we fix any other point z E P', then $x in GF(q) 1 such 

that V other pointy in GF(q)2, the triple {x, y, z} is contained in some block. For 

example, if we choose z = 01, then choose x = 11• There exist q ~ 5 
co sets Q 1 + a 1 

which contain the pair { 01, 11}. Then the cosets Q2 + a2 and N2 + a2 cover GF(qh. 

If z is any other point in GF(q)1, say a 1, then choose x = 0 1.The pair {01 ,a 1} 

is contained in at least q ~ 5 
cosets Q1 + b1• Then again the cosets Q2 + b2 and 

N2 + b2 cover GF(q)2• 
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Ifz = 02, then choosex = 02. All blocks of the form [Q 1 + a 1 U {a1} U Q2 + a2J 

where a E Q, contain {01, 02}. Since any pair of points in GF(qh is in at least 

q-
5 

cosets Q2 + c2, then for any other b2 E GF(qh, the triple {01, 02, b2} is 
4 

contained in some block [Q1 + a 1 U {a1} U Q2 + a2] where a E Q. 
If z is any other point in GF(qh, say a2, then choose x = 11• We must show 

that for any other point y = b2 in GF(qh, there exists a block which contains the 
triple {a2, 11, b2}. We note that if 11 is contained in the coset Q1 + a1 then a 1 - 1 
must be a square. 

First, we consider the case when a2 E Q2. If b2 E Q2, then the block 
[Q1 U {0.} U Q2]contains the triple {a2, 11, b2}. If b2 E N2 U {02}, then there exist at 
least two pairs say, {Q1, Q2} c Q2 and {n1, n2} £ N 2 such that a2 - b2 = q 1 - q2 = 
n 1-n2. Findssuchthats=a2 -q1 =b2 -q2. Ifs-1 E Q2,thentheblock IQ1+s1U 
{s1} U Q2 + s2] contains the triple {a2, 11, b2}. Otherwise, finds such thats = a 2 - n 1 = 
b2 - n2 ands- 1 E Q2. Then the block [Q1 + s 1 U {ti} U N 2 + s2] contains the triple 

{a2, lt,b2}. 
Next, we consider the case when a 2 is a non-square. If b 2 E Q2, then the 

block [Q 1 U {ti} U N 2] contains the triple {a2, 11, b2}. If b2 E Q2 U {02}, then we 
again find two pairs { q 1, q 2} c Q2 and { n 1, n 2} c N 2 such that 
a2 - b 2 = q 1 - q2 = n1 - n 2. Then, as before we find a squares- 1 such that s = a 2 
- ql = b2- q2 or s = a2 - n1 = b2 - n2. Then either [Q1 + s1 U {s1} U Q2 + s2] or 
[Q1 + s1 U {ti} U N2 + s2] contains the triple {a2, 11, b2}. 

Lemma 4.4 Let a E Aut D'. 

(i) If a(0 1) = 01 then a(Q1) = (Q1). 

(U) If a(xl) = Xt \fxl E GF(q)l then a is the identity element of Aut n·. 

Proof. 

(i) By Lemmas 4.2 and 4.3, Aut D' must fix GF(qh and ti. Hence, it must also 

fix GF(q)1• 

Let o be an unknown automorphism of D'. Then o{ti} = ti· If we assume 
that o (01) = 01, then this would imply that o (02) = 02 since the triple 
{ 0 1, t i, 02} is not contained in any block. 

We now consider the blocks containing 0 1, namely [Q1 U {01} U Q2] and 
blocks of the form [Q1 + a 1 U {a1} U Q2 + a 2] and [Q1 + a 1 U {ti} U N2 + a2] 

where a E Q. Since a fixes0 1 andtiblocksoftheform [Q1 +a1 U {ti}U N 2 + a2] 

must be mapped to blocks of the same type. Now, blocks of the type 
[Q1 + a 1 U {a1} U Q2 + a 2] where a E Q contain both 01 and 02 while 
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[Q1 U {0.} U Q2] contains only 0 1• Thus the block [Q1 U {0.} U Q2] must 

be fixed by a. Hence a(Q1) = Q1, a (0 1) = 0 1and o(Q2) = Q2• This then 
implies that a(N1) = N1, a(02) = 02, and a(N2) = N2. 

We note that fromTheorem 4.1, Aut D' has a group which fixes 0 1, 02 and 

which is transitive on Q1, N1, Q2, and N2• 

(ii) Now, if we assume that a(x1) = x 1 \fx1 E GF(q)1 then we get that a is the 
identity permutation. This is because a(x1) = x 1 implies a(x2) = x2 since the 

triple {x1, ti, x2} is not contained in any block. 

We will also need the following restatement of a theorem by Carlitz [ 2]. 
Another proof of Carlitz' theorem has been given by Bruen and Levinger [ 1]. 

Theorem 4.5 (Carlitz) For q = pn, where pis prime and n is a positive integer .. 
l 

we letf : GF(q) - GF(q) be such thatf(O) = 0 andf(Q) = Q. Thenf(x) = axP 
for some a E Q, I S i s n. 

q- 1 
Theorem 4.6 Let D' denote a Paley 2- (2q + 1, q, 

2 
) design for q = p", q = 1 

(mod 4), q ~ 9. Then its automorphism group Aut D' is the group G of Theorem 
q-1 

4.1 and has order nq 
2 

. 

Proof. Let a E Aut D'. If a(0 1) = 0 1, then a (Q1) = (Q1) by part (i) of ~emma 4.4. 

Thus, we can apply Carlitz theorem and we know that a(x) = axP' for some 
a E Q, 1 .S i S n. 

Let Sym(GF(q)) denote the group of permutations on GF(q). Now, the map

ping Aut D'- Sym(GF(q)) given by a- aiGF(q}J is a group homomorphism and 
so is t/J : (Aut D')01 - Sym(GF(q))0 where Gx denotes the stabilizer of x in G. 

By Carlitz' Theorem, we know that lfm 9'>1 = n. q; 1 
. Also, by part (ii) of 

Lemma 4.4, t/J is an isomorphism. Thus, !(Aut D')01 1/m tfJI. By the orbit-stabilizer 
theorem, this implies that I Aut D'l = q.l (Aut D')o I since the length of the orbit of 

-1 1 
0 1 is q. Therefore, IAut D'l = nq. q and Aut D' must be the group G of 
Theorem 4.1. D 2 
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