ON THE AUTOMORPHISM GROUPS OF PALEY 2-DESIGNS

BLESILDA P. RAPOSA
Mathematics Department
De La Salle University
2401 Taft Avenue
1004 Manila, Philippines

Abstract

We determine here the automorphism groups of Paley $2-\left(2 q+1, q, \frac{q-1}{2}\right)$ designs where q is a prime power such that $\mathrm{q} \equiv 1(\bmod 4)$.

1. INTRODUCTION

A special construction of Hadamard 1-designs of Paley type was given by N. Ito in [3]. Paley 2- and 3-designs are Hadamard 2-and 3-designs, respectively, which are derived from Hadamard 1-designs of Paley type [4]. The purpose of this paper is to determine the automorphism groups of Paley 2-Designs. The proof makes use of a theorem by Carlitz [2].

2. HADAMARD DESIGNS

In this section, we present the definition of Hadamard 1-, 2- and 3-designs. These concepts are defined and their relationships are expounded in [4].
Definition 2.1 Let t, v, k, λ be positive integers such that $v>k>t \geq 1$ and $\lambda \geq 1$. The pair $D=(P, B)$ is called a $t-(v, k, \lambda)$ design or simply a $t-\operatorname{design}$ if P is a finite set of \cup elements called points and B consists of k-subsets of P called blocks and every t-subset of P is contained in precisely λ blocks.
Definition 2.2 Let $P=\left\{1,2, \ldots, n, 1^{\circ}, 2^{\circ}, \ldots, n^{\circ}\right\}$ be a $2 n$-set such that n is a positive multiple of four. Let $B=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}, \alpha_{1}^{\circ}, \alpha_{2}^{\circ}, \ldots, \alpha_{n}^{\circ}\right\}$ be a family of n-subsets of P, with $\alpha_{\mathrm{i}}^{\circ}=P-\alpha_{\mathrm{i}}, 1 \leq i \leq n$ The pair $D=(P, B)$ is called an Hadamard design if the following conditions are satisfied:
(i) Each point is contained in precisely n blocks. That is, D is a 1-design.
(ii) Each pair of points except $\left\{i, i^{\circ}\right\}, 1 \leq i \leq n$, is contained in precisely $n / 2$ blocks. The pair $\left\{i, i^{\circ}\right\}$, for $1 \leq i \leq n$, is contained in no blocks.
(iii) Each triple of points not containing $\left\{i, i^{\circ}\right\}, 1 \leq i \leq n$, is contained in precisely $n / 4$ blocks.
(iv) Each pair of blocks except $\left\{\alpha_{i}, \alpha_{1}^{o}\right\}, 1 \leq i \leq n$, meets in precisely $n / 2$ points.
(v) Each trio of blocks not containing $\left\{\alpha_{i}, \alpha_{i}^{\circ}\right\}, 1 \leq i \leq n$, meets in precisely $n / 4$ points.

Definition 2.3 Let D be an Hadamard 1-($2 \mathrm{n}, \mathrm{n}, \mathrm{n}$) design where $n \leq 8$. Let α be a fixed block of D. We define the derived design of D with respect to the block α denoted by $D(\alpha)=(P(\alpha), B(\alpha)$, as the design whose point set and block set are $\left(P(\alpha)=\alpha\right.$ and $B(\alpha)=\left\{\beta \cap \alpha ; \beta \in B, \beta \neq \alpha, \alpha^{\circ}\right.$, respectively.

It was shown in [4] that $D(\alpha$,$) is a 3-design called an Hadamard 3-design.$
Definition 2.4 Let D be an Hadamard 1-($2 \mathrm{n}, \mathrm{n}, \mathrm{n}$) design where $n \leq 8$. Let α be a fixed block of D and let $D(\alpha)$ be the resulting Hadamard 3-design. Let i be a fixed point of $D(\alpha)$. We define the derived design of $D(\alpha)$ with respect to the point i, denoted by $D(\alpha, i)=(P(\alpha, i), B(\alpha, i))$, as the design whose point set and block set are $(P(\alpha, i)=\alpha-i$ and $B(\alpha, i)=\{\beta \cap \alpha-\{i\} ; i \in \beta \in B(\alpha)\}$, respectively.

From [4], $D(\alpha, i)$ is a 2-design called an Hadamard 2-design.

3. PALEY DESIGNS

We present here the construction of Hadamard 1-designs of Paley type given by N . Ito in [3]. We then show the points and blocks of the corresponding Hadamard 3- and 2-designs.

Let q be a prime power such that $q \equiv 1(\bmod 4)$ and let $G F(q)$ be the field of q elements. Let Q and N denote the sets of quadratic residues and non-quadratic residues respectively, of the multiplicative group $G F(q)^{*}$. We introduce a new symbol t. Then consider four disjoint copies of $G F(q) \cup\{t\}$, namely, $G F(q)_{1} \cup\left\{t_{1}\right\}$, $G F(q)_{1}^{*} \cup\left\{t_{1}^{*}\right\}, G F(q)_{2} \cup\left\{t_{2}^{*}\right\}$, and $G F(q)_{2}^{*} \cup\left\{t_{2}^{*}\right\}$. For any $a \in, G F(q)$, the four mappings which map a to $a_{1}, a_{1}^{*}, a_{2}, a_{2}^{*}$, respectively are isomorphisms.

We let

$$
\begin{aligned}
P(q)= & \left\{t_{1}\right\} \cup G F(q)_{1} \cup\left\{t_{1}^{*}\right\} \cup G F\left(q_{1}\right)^{*} \cup\left\{t_{2}\right\} G F(q)_{2} \cup\left\{t_{2}^{*}\right\} \cup G F(q)_{2}^{*} ; \\
\beta_{1}(t)= & \left\{t_{1}\right\} \cup G F(q)_{1} \cup\left\{t_{2}^{*}\right\} \cup G F(q)_{2} ; \\
\beta_{1}(a)= & \left\{t_{1}\right\} \cup Q_{1}+a_{1} \cup\left\{a_{1}\right\} \cup N_{1}^{*}+a_{1}^{*} \cup\left\{t_{2}\right\} \cup Q_{2}+a_{2} \cup\left\{a_{2}^{*}\right\} \\
& \cup N_{2}^{*}+a_{2}^{*} \text { where } a \text { runs over } G F(q) ; \\
\beta_{2}(t)= & \left\{t_{1}^{*}\right\} \cup G F(q)_{1}+\cup\left\{t_{2}^{*}\right\} \cup G F\left(q_{2}^{*}\right) ; \\
\beta_{2}(a)= & \left\{t_{1}\right\} \cup Q_{1}+a_{1} \cup\left\{a_{1}^{*}\right\} \cup N_{1}^{*}+a_{1}^{*} \cup\left\{t_{2}^{*}\right\} \cup Q_{2}^{*}+a_{2}^{*} \cup\left\{a_{2}^{*}\right\} \\
& \cup N_{2}+a_{2} \text { where } a \text { runs over } G F(q) ;
\end{aligned}
$$

Then we let $\beta_{i}(a)^{c}=P(q)-\beta_{i}(a) ; i=1,2$ and $\beta_{i}(t)^{c}=P(q)-\beta_{i}(t) ; i=1,2$. Furthermore, we let $B(q)=\left\{\beta_{i}(t), \beta_{i}(a), \beta_{i}(t)^{c}, \beta_{i}(a)^{c}\right.$ where a runs over $G F(q)$ and $i=1,2$.

Then $D(q)=(P(q), B(q))$ is an Hadamard 1-design and is called an Hadamard 1-design of Paley type [3].

Consider now the derived design of $D(q)$ with respect to the block $\beta_{i}(t)$, denoted by $D\left(\beta_{\lambda}(t)\right)=\left(P\left(\beta_{1}(t)\right), B\left(\beta_{1}(t)\right)\right.$. Then $P\left(\beta_{1}(t)\right)=\beta_{1}(t)$ and $B\left(\beta_{1}(t)\right)=\{\alpha$, $\left.\beta(a), \mathrm{g}(a), \alpha^{c}, \beta(a)^{c}, \mathrm{~g}(a)^{c}\right\}$ where the blocks

$$
\begin{array}{ll}
\alpha=G F(\mathrm{q})_{2} \cup\left\{t_{1}\right\} \\
\beta(a)= & Q_{1}+a_{1} \cup\left\{a_{1}\right\} \cup Q_{2}+a_{2} \cup\left\{t_{1}\right\} ; \\
\mathrm{g}(a)= & Q_{1}+a_{1} \cup\left\{t_{2}^{*}\right\} \cup N_{2}+a_{2} \cup\left\{t_{1}\right\}
\end{array}
$$

are such that a runs over $G F(q)$ and δ^{c} denotes the complement of the block δ with respect to the point set $P\left(\beta_{1}(t)\right)$.

Then from Section 2, $D\left(\beta_{1}(t)\right)$ is an Hadamard $3-\left(2 q+2, q+1, \frac{q-1}{2}\right.$ design which we shall call an Hadamard 3-design of Paley type.

Next, we consider the derived design of $D\left(\beta_{1}(t)\right)$ with respect to the point $t 1$ denoted by $D\left(\beta_{1}(t), t_{1}\right)=\left(P\left(\beta_{1}(t), t_{1}\right), B\left(\beta_{1}(t), t_{1}\right)\right)$. We then have $P\left(\beta_{1}(t), t_{1}\right)=$ $G F\left(q_{1}\right) \cup G F\left(q_{2}\right) \cup\left\{t_{2}^{*}\right\}$ and $B\left(\beta_{1}(t), t_{1}\right)=\left\{\alpha^{\prime}, \beta^{\prime}(a), \mathrm{g}^{\prime}\left(a^{c}\right\}\right.$ where the blocks

$$
\begin{aligned}
& \alpha^{\prime}=G F(\mathrm{q})_{2} \\
& \left.\beta^{\prime} a\right)=Q_{1}+a_{1} \cup\left\{a_{1}\right\} \cup Q_{2}+a_{2} ; \text { and } \\
& \mathbf{g}^{\prime}(a)=Q_{1}+a_{1} \cup\left\{t_{2}^{*}\right\} \cup N_{2}+a_{2}
\end{aligned}
$$

are such that a runs over $G F(q)$.

$$
\frac{q-1}{2} \text { design }
$$

which we shall call an Hadamard 2-design of Paley type.
We note here that these families of Paley designs are distinct from the designs of quadratic residue type which some literature also refer to as Paley designs. Designs of quadratic residue type have point set equal to $G F(q)$ for q a prime power and $q \equiv 3(\bmod 4)$. Its blocks are of the form $Q+a$, where Q denotes the set of quadratic residues of $G F(q)$ and a runs over $G F(q)$. Note that while the number of points in our Paley designs is $2 q+1 \equiv 3(\bmod 4), 2 q+1$ is not always a prime power. The only time when our Paley designs and designs of quadratic residues type are isomorphic is when the number of points is 11 .

4. AUTOMORPHISM GROUPS OF PALEY 2-DESIGNS

In this section, we determine the automorphism groups of the Paley 2designs.

4.1 The case $q=5$.

We first consider the case when $q=5$. That is, we consider the Paley $2-(11,5,2)$ design which is isomorphic to the design of quadratic residue type for $q=11$.

Its automorphism group is of order $660=2^{2} \times 3 \times 5 \times 11$. Its generators are

$$
\begin{aligned}
a & =\left(0_{1}, 1_{1}\right)\left(3_{1}, t_{2}^{*}\right)\left(0_{2}, 2_{2}\right)\left(1_{2}, 4_{2}\right), \\
b & =\left(2_{1}, 4_{1}\right)\left(3_{1}, t_{2}^{*}\right)\left(0_{2}, 4_{2}\right)\left(1_{2}, 2_{2}\right), \\
c & =\left(1_{1}, 4_{1}, 1_{2}\right)\left(2_{1}, 3_{2}, t_{2}^{*}\right)\left(3_{1}, 2_{2}, 0_{2}\right) \text { and } \\
d & =\left(2_{1}, 2_{2}, 0_{2}\right)\left(3_{1}, 3_{2}, t_{2}^{*}\right)\left(4_{1}, 4_{2}, 1_{2}\right)
\end{aligned}
$$

The group contains an 11-cycle $\left(1_{1}, 2_{1}, 3_{1}, 3_{2}, 2_{2}, 4_{2}, 0_{1}, 3_{2}, 4_{1}, t_{2}^{*}, 0_{2}\right)$ and is transtive. The group was first discovered by Todd [6].

4.2 The case $q>5$

Henceforth, the Paley 2-designs we will consider will have $q \geq 9$.
Let $q=p^{n}, q \equiv 1(\bmod 4)$, where p is prime and n is a natural number. Let a, b be fixed elements of $G F(q)$ such that a is a nonzero square. Let $D^{\prime}=\left(P^{\prime}, B^{\prime}\right)$ denote a Paley 2-design. We define $\pi_{a, b j}: P^{\prime} \rightarrow P^{\prime}$ such that

$$
\pi_{a, b_{j}:}:\left\{\begin{array}{l}
x \rightarrow a_{i} x^{\rho^{j}}+b_{i} \text { if } x \in G F(q)_{i}, i=1,2 ; 1 \leq j \leq n, \\
t_{2}^{*} \rightarrow t_{2}^{*}
\end{array}\right.
$$

Theorem 4.1 The set $G=\left\{\pi_{a, b j}: a, b \in G F(q)\right.$ is nonzero square, $\left.1 \leq j \leq n\right\}$ is an automorphism group for the Paley 2-designs.

Proof. Clearly, every $\pi_{a, b j}$ maps every point of $G F(q)_{2}$ to a point in $G F(q)_{2}$, or equivalently, the block $G F(q)_{2}$ is fixed by G.

Next, the point $x \in Q+y$ iff $x=d+y$ for a nonzero square d. Hence $\pi_{a, b_{j}}$: $x \rightarrow a x^{p^{j}}+b=a d p^{j}+a y^{p^{j}}+b \in Q+\left(a y^{p^{j}}+b\right)$. Thus, the block $\left[Q_{1}+y_{1} \cup\right.$ $\left.\left\{y_{1}\right\} \cup Q_{2}+y_{2}\right]$ is mapped to the block $\left[Q_{1}+\left(a_{1} y_{1}^{p j}+b_{1}\right) \cup\left\{a_{1} y_{1}^{p j}+b_{1}\right\}\right] \cup$ $\left.Q_{2}+\left(a_{2} y_{2}^{p j}+b_{2}\right)\right]$

Similarly, the point $x \in N+y$ iff $x=n+y$ for a nonquadratic residue n. Thus, $\pi_{a, b_{j}}: x \rightarrow a x^{p^{j}}+b=a n^{p^{j}}+a y^{p^{j}}+b \in N+\left(a y^{p^{j}}+b\right)$. Thus, the block $\left[Q_{1}+y_{1} \cup\left\{t_{2}^{*}\right\} \cup N_{2}+y_{2}\right]$ is mapped to the block $\left[Q_{1}+\left(a_{1} y_{1}^{p j}+b_{1}\right) \cup\left\{t_{2}^{*}\right\}\right.$ $\left.\cup N_{2}+\left(a_{2} y_{2}^{p}+b_{2}\right)\right]$.

Next, we show that G is the automorphism group of the Paley 2-designs for $q \geq 9$. We first need the following lemmas.

Lemma 4.2 $G F(q)_{2}$ is an isolated block.

Proof.

$G F(q)_{2}$ has the special property that for any other block $\alpha \in B^{\prime}, \$$ a block β $\in B^{\prime}$ such that $G F(q)_{2} \cap \alpha \cap \beta=0$. That is, note that $\forall a \in G F(q)$,
$G F(q)_{2} \cap\left[Q_{1}+a_{1} \cup\left\{a_{1}\right\} \cup Q_{2}+a_{2}\right] \cap\left[Q_{1}+a_{1} \cup\left\{t_{2}^{*}\right\} \cup N_{2}+a_{2}\right]=\emptyset$.
On the other hand, if we fix any other block $\gamma \in B^{\prime}$, then $\$ \alpha \in B^{\prime}$ such that $\forall \beta \in B^{\prime}$, we have

$$
\begin{equation*}
\gamma \cap \alpha \cap \beta \neq 0 . \tag{1}
\end{equation*}
$$

For example, if we choose $\gamma=\left[Q_{1} \cup\left\{0_{1}\right\} \cup Q_{2}\right]$, then we can choose $\alpha=$ $\left[Q_{1} \cup\left\{t_{2}^{*}\right\} \cup N_{2}\right]$. Clearly, in this case, (1) is satisfied. By Theorem 4.1, the block $\left[Q_{1}+a_{1} \cup\left\{a_{1}\right\} \cup Q_{2}+a_{2}\right]$ is equivalent to $\left[Q_{1} \cup\left\{0_{1}\right\} \cup Q_{2}\right]$. That is, they have the same orbit under the group G of Theorem 4.1 Hence (1) is also satisfied by blocks of the form $\left[Q_{1}+a_{1} \cup\left\{a_{1}\right\} \cup Q_{2}+a_{2}\right]$.

If we choose $\gamma=\left[Q_{1} \cup\left\{t_{2}^{*}\right\} \cup N_{2}\right]$, then we can choose $\alpha=\left[Q_{1} \cup\left\{0_{1}\right\} \cup\right.$ $\left.Q_{2}\right]$. Thus, (1) is satisfied. By Theorem 4.1, the block $\left[Q_{1}+a_{1} \cup\left\{t_{2}^{*}\right\} \cup N_{2}+a_{2}\right]$ is equivalent to $\left[Q_{1} \cup\left\{t_{2}^{*}\right\} \cup N_{2}\right]$, hence (1) is also satisfied by blocks of the form $\left[Q_{1}+a_{1} \cup\left\{t_{2}^{*}\right\} \cup N_{2}+a_{2}\right] . \mathrm{L}$

Lemma $4.3 t_{2}^{*}$ is an isolated point.
Proof. The point t_{2}^{*} has the special property that for any other point x in $G F(q)_{1}, \$$ another point y in $G F(q)_{2}$, such that the triple of points $\left\{t_{2}^{*} x, y\right\}$ is not contained in any block. Note that $\left\{t_{2}^{*} a_{1}, a_{2}\right\}$ is not contained in any block.

On the other hand, if we fix any other point $z \in P^{\prime}$, then $\$ x$ in $G F(q)_{1}$ such that \forall other point y in $G F(q)_{2}$, the triple $\{x, y, z\}$ is contained in some block. For example, if we choose $z=0_{1}$, then choose $x=1_{1}$. There exist $\frac{q-5}{4}$ cosets $Q_{1}+a_{1}$ which contain the pair $\left\{0_{1}, 1_{1}\right\}$. Then the cosets $Q_{2}+a_{2}$ and $N_{2}+a_{2}$ cover $G F(q)_{2}$.

If z is any other point in $G F(q)_{1}$, say a_{1}, then choose $x=0_{1}$. The pair $\left\{0_{1}, a_{1}\right\}$ is contained in at least $\frac{q-5}{4}$ cosets $Q_{1}+b_{1}$. Then again the cosets $Q_{2}+b_{2}$ and $N_{2}+b_{2}$ cover $G F(q)_{2}$.

If $z=0_{2}$, then choose $x=0_{2}$. All blocks of the form $\left[Q_{1}+a_{1} \cup\left\{a_{1}\right\} \cup Q_{2}+a_{2}\right]$ where $a \in Q$, contain $\left\{0_{1}, 0_{2}\right\}$. Since any pair of points in $G F(q)_{2}$ is in at least $\frac{q-5}{4}$ cosets $Q_{2}+c_{2}$, then for any other $b_{2} \in G F(q)_{2}$, the triple $\left\{0_{1}, 0_{2}, b_{2}\right\}$ is contained in some block $\left[Q_{1}+a_{1} \cup\left\{a_{1}\right\} \cup Q_{2}+a_{2}\right]$ where $a \in Q$.

If z is any other point in $G F(q)_{2}$, say a_{2}, then choose $x=1_{1}$. We must show that for any other point $y=b_{2}$ in $G F(q)_{2}$, there exists a block which contains the triple $\left\{a_{2}, 1_{1}, b_{2}\right\}$. We note that if 1_{1} is contained in the coset $Q_{1}+a_{1}$ then $a_{1}-1$ must be a square.

First, we consider the case when $a_{2} \in Q_{2}$. If $b_{2} \in Q_{2}$, then the block $\left[Q_{1} \cup\left\{0_{1}\right\} \cup Q_{2}\right]$ contains the triple $\left\{a_{2}, 1_{1}, b_{2}\right\}$. If $b_{2} \in N_{2} \cup\left\{0_{2}\right\}$, then there exist at least two pairs say, $\left\{Q_{1}, Q_{2}\right\} \subseteq Q_{2}$ and $\left\{n_{1}, n_{2}\right\} \subseteq N_{2}$ such that $a_{2}-b_{2}=q_{1}-q_{2}=$ $n_{1}-n_{2}$. Find s such that $s=a_{2}-q_{1}=b_{2}-q_{2}$. If $s-1 \in Q_{2}$, then the block $\mid Q_{1}+s_{1} \cup$ $\left.\left\{s_{1}\right\} \cup Q_{2}+s_{2}\right\}$ contains the triple $\left\{a_{2}, 1_{1}, b_{2}\right\}$. Otherwise, find s such that $s=a_{2}-n_{1}=$ $b_{2}-n_{2}$ and $s-1 \in Q_{2}$. Then the block $\left[Q_{1}+s_{1} \cup\left\{t_{2}^{*}\right\} \cup N_{2}+s_{2}\right]$ contains the triple $\left\{a_{2}, 1_{1}, b_{2}\right\}$.

Next, we consider the case when a_{2} is a non-square. If $b_{2} \in Q_{2}$, then the block $\left[Q_{1} \cup\left\{t_{2}^{*}\right\} \cup N_{2}\right]$ contains the triple $\left\{a_{2}, 1_{1}, b_{2}\right\}$. If $b_{2} \in Q_{2} \cup\left\{0_{2}\right\}$, then we again find two pairs $\left\{q_{1}, q_{2}\right\} \subseteq Q_{2}$ and $\left\{n_{1}, n_{2}\right\} \subseteq N_{2}$ such that $a_{2}-b_{2}=q_{1}-q_{2}=n_{1}-n_{2}$. Then, as before we find a square $s-1$ such that $s=a_{2}$ $-q_{1}=b_{2}-q_{2}$ or $s=a_{2}-n_{1}=b_{2}-n_{2}$. Then either $\left[Q_{1}+s_{1} \cup\left\{s_{1}\right\} \cup Q_{2}+s_{2}\right]$ or $\left[Q_{1}+s_{1} \cup\left\{t_{2}^{*}\right\} \cup N_{2}+s_{2}\right]$ contains the triple $\left\{a_{2}, 1_{1}, b_{2}\right\}$.

Lemma 4.4 Let $\sigma \in$ Aut D^{\prime}.
(i) If $\sigma\left(0_{1}\right)=0_{1}$ then $\sigma\left(Q_{1}\right)=\left(Q_{1}\right)$.
(ii) If $\sigma\left(x_{1}\right)=x_{1} \forall x_{1} \in G F(q)_{1}$ then σ is the identity element of Aut D '.

Proof.

(i) By Lemmas 4.2 and 4.3, Aut D^{\prime} must fix $G F(q)_{2}$ and t_{2}^{*}. Hence, it must also fix $G F(q)_{1}$.
Let σ be an unknown automorphism of D^{\prime}. Then $\sigma\left\{t_{2}^{*}\right\}=t_{2}^{*}$. If we assume that $\sigma\left(0_{1}\right)=0_{1}$, then this would imply that $\sigma\left(0_{2}\right)=0_{2}$ since the triple $\left\{0_{1}, t_{2}^{*}, 0_{2}\right\}$ is not contained in any block.
We now consider the blocks containing 0_{1}, namely $\left[Q_{1} \cup\left\{0_{1}\right\} \cup Q_{2}\right]$ and blocks of the form $\left[Q_{1}+a_{1} \cup\left\{a_{1}\right\} \cup Q_{2}+a_{2}\right]$ and $\left[Q_{1}+a_{1} \cup\left\{t_{2}^{*}\right\} \cup N_{2}+a_{2}\right]$ where $a \in Q$. Since σ fixes 0_{1} and t_{2}^{*} blocks of the form $\left[Q_{1}+a_{1} \cup\left\{t_{2}^{*}\right\} \cup N_{2}+a_{2}\right]$ must be mapped to blocks of the same type. Now, blocks of the type $\left[Q_{1}+a_{1} \cup\left\{a_{1}\right\} \cup Q_{2}+a_{2}\right]$ where $a \in Q$ contain both 0_{1} and 0_{2} while
$\left[Q_{1} \cup\left\{0_{1}\right\} \cup Q_{2}\right]$ contains only 0_{1}. Thus the block $\left[Q_{1} \cup\left\{0_{1}\right\} \cup Q_{2}\right]$ must be fixed by σ. Hence $\sigma\left(Q_{1}\right)=Q_{1}, \sigma\left(0_{1}\right)=0_{1}$ and $\sigma\left(Q_{2}\right)=Q_{2}$. This then implies that $\sigma\left(N_{1}\right)=N_{1}, \sigma\left(0_{2}\right)=0_{2}$, and $\sigma\left(N_{2}\right)=N_{2}$.

We note that fromTheorem 4.1, Aut D^{\prime} has a group which fixes $0_{1}, 0_{2}$ and which is transitive on Q_{1}, N_{1}, Q_{2}, and N_{2}.
(ii) Now, if we assume that $\sigma\left(x_{1}\right)=x_{1} \forall x_{1} \in G F(q)_{1}$ then we get that σ is the identity permutation. This is because $\sigma\left(x_{1}\right)=x_{1}$ implies $\sigma\left(x_{2}\right)=x_{2}$ since the triple $\left\{x_{1}, t_{2}^{*}, x_{2}\right\}$ is not contained in any block.

We will also need the following restatement of a theorem by Carlitz [2]. Another proof of Carlitz' theorem has been given by Bruen and Levinger [1].

Theorem 4.5 (Carlitz) For $q=p^{n}$, where p is prime and n is a positive integer, we let $f: G F(q) \rightarrow G F(q)$ be such that $f(0)=0$ and $f(Q)=Q$. Then $f(x)=a x^{p^{i}}$ for some $a \in Q, 1 \leq i \leq n$.
Theorem 4.6 Let D^{\prime} denote a Paley $2-\left(2 q+1, q, \frac{q-1}{2}\right)$ design for $q=p^{n}, q \equiv 1$ $(\bmod 4), q \geq 9$. Then its automorphism group Aut D^{\prime} is the group G of Theorem 4.1 and has order $n q \frac{q-1}{2}$.

Proof. Let $\sigma \in$ Aut D^{\prime}. If $\sigma\left(0_{1}\right)=0_{1}$, then $\sigma\left(Q_{1}\right)=\left(\mathrm{Q}_{1}\right)$ by part (i) of Lemma 4.4. Thus, we can apply Carlitz theorem and we know that $\sigma(x)=a x^{p^{i}}$ for some $a \in Q, 1 \leq i \leq n$.

Let $\operatorname{Sym}(G F(q))$ denote the group of permutations on $G F(q)$. Now, the mapping Aut $D^{\prime} \rightarrow \operatorname{Sym}(G F(q))$ given by $\left.\sigma \rightarrow \sigma\right|_{G F(q)}$, is a group homomorphism and so is $\phi:\left(\text { Aut } D^{\prime}\right)_{0_{1}} \rightarrow \operatorname{Sym}(G F(q))_{0}$ where G_{x} denotes the stabilizer of x in G.

By Carlitz' Theorem, we know that $|I m \phi|=n \cdot \frac{q-1}{2}$. Also, by part (ii) of Lemma 4.4, ϕ is an isomorphism. Thus, $\mid\left(\text { Aut } D^{\prime}\right)_{0_{1}}|I m \phi|$. By the orbit-stabilizer theorem, this implies that \mid Aut $D^{\prime}|=q.|\left(\text { Aut } D^{\prime}\right)_{0_{1}} \mid$ since the length of the orbit of 0_{1} is q. Therefore, \mid Aut $D^{\prime} \left\lvert\,=n q . \frac{q-1}{2}\right.$ and Aut D^{\prime} must be the group G of Theorem 4.1.

ACKNOWLEDGMENT

This research was done when the author visited Kyushu University in 1997 under the auspices of the Japan Society for the Promotion of Science. The author also wishes to acknowledge the many valuable suggestions of Professor Noboru

Ito in the proofs of the main results. Likewise, the author is indebted to Professor Akihiro Munemasa for his improvement of the proof of Theorem 4.1 and also for bringing Carlitz' theorem to the attention of the author.

REFERENCES

1. Bruen, A., and B. Levinger. A Theorem on Permutations of a Finite Field. Can. J. Math. 25, No. 5, 1060-1065 (1973).
2. Carlitz, L. A Theorem on Permutations in a Finite Field. Proc. Amer. Math. Soc. 11, 456-459 (1960).
3. Ito, N. On Hadamard Groups II, J. of Algebra 169, No. 3, 936-942 (1994).
4. Ito, N., J.S.Leon, and J.Q. Longyear. Hadamard Toumaments of Order 23, Math J. of Ohayama Univ. 35, 1-15 (1993).
5. Norman, C. A Characterization of the Matheiu Group M11, Math. Zeitschr. 106, 162-166 (1968).
6. Todd, J. A. A Combinatorial Problem. J. Math. and Phys. 12, 321-333 (1933).
