ENVIRONMENTAL CONTAMINATION OF AQUATIC RESOURCES: IMPLICATIONS ON HEALTH

Lynn Crisanta R. Panganiban, MD, DPAFP, FPSCOT Professor, Department of Pharmacology & Toxicology U.P. College of Medicine Consultant, National Poison Management & Control Center UP College of Medicine-Philippine General Hospital

Objectives

Review the conceptual model of exposure pathway

- Enumerate common environmental pollutant issues affecting aquatic resources
- Discuss the health implications of aquatic contaminations
- Outline preventive strategies to address environmental issues involving food and water

Laguna Lake Pollution The Millennium Ecosystem Assessment, sub global assessment done in 2005 states that heavy metals such as lead (Pb), chromium (Cr), cadmium (Cd), copper (Cu), arsenic (As), and mercury (Hg) have all been found in the Laguna Lake

Source: LASCO, Rodel D, and ESPALDON, Ma. Victoria (eds.). 2005. Ecosystem and People: The Philippine Millennium Ecosystem Assessment (MA) Sub-global Assessment, pp. 4, 16, 18-19, 31-34.

The major causes of pollution are effluents that contain heavy metals, organic wastes and other hazardous materials from industries. Some of the heavy metals detected in the Marilao-Meycauayan-Obando river system are lead(Pb), mercury(Hg), chromium(Cr), arsenic(As), cadmium(Cd), and some synthetic organic <u>compounds</u>. If these metals are taken unknowingly, it can reach levels endangering the health of human beings. The final recipient of the contaminated water is the Manila Bay, already known to be heavily pollute and posing a serious environmental problem. Being located on the fringes of Metro Manila, the municipalities of Marilao and Meycauayan are hosts to a multitude of industries and urban-related activities.

TXXT! **Monitoring POPs in Selected Biota in the** Philippines (Santiago EC, Kwan CS) Pesticides monitored in freshwater shrimps (2006), fish (2007), squid (2008) FINDINGS: SHRIMP SAMPLES

- Shrimp muscle sample from one site in Chico River showed concentrations of transchlordane and p,p' DDT (dry season)
- Shrimp muscle samples showed concentration of transchlordane and endosulfan 1(rainy season)
- All heads of shrimp samples showed varying concentrations of p,p' DDT, trans nonachlor and methoxychlor; some with p,p'DDD , $\underline{\alpha}$ BHC, endosulfan

TXXT Monitoring POPs in Selected Biota in the Philippines (Santiago EC, Kwan CS) Pesticides monitored in freshwater shrimps (2006), fish (2007), squid (2008)

- FINDINGS: SQUID SAMPLES
- OCPS were detected in liver and muscle tissues in all samples
- OCPS were detected depending on sample sites
- δ BHC and β BHC, methoxychlor were detected in all liver samples
- p,p' DDD and β BHC were detected in all muscle samples

Study	Population	Dose	Findings		
Tseng et al. (1968) Skin ca	Taiwan, >40,000 in survo	y 0.01-1.82 ppm	Skin cancer (10.6/1000)," hyperpign (71/1000), Blackfoot disease (8.9/10	tentation (183.5/1000), keratoses 00); revalence rate of effects increas	
			with age; Blackfoot disease associat and skin cancer	ed with hyperpigmentation, keratos	
Chen et al. (1988)	Taiwan, -900,000 person-years	0-30 ppm, 30-59 ppm, > 60 ppm	Significant dose-response relationshi mortality for bladder, kidney, skin, i	p between As and age-adjusted prostate, lung and liver cancer	
Smith et al. (1998)	Chile, >400,000	<100 to 570 µg/l	SMR for bladder cancer: men, 6.0;	women, 8.2; lung cancer: men 3.8;	
Karagas et al. (2001)	Lung cancer:	men 3.8; worr	nen 3.1	evated at toenail As concentration ratios with toenail As concentrat SCC and 1.44 for BCC.	
Smith et al. (2006)	Antofagasta, Chile	-1 ppm for 12 years	In atero and early childhood expose lung cancer SMR: early childhood, Bronchiectasis SMR: early childhoo 46.2	re occurred between 1959 and 197 7.0; in utero + early childhood, 6, d, 12.4, in utero + early childhood	
	Inner Mongolia, China; 313 subjects	≤21-690 μg/l	Total Dose-dependent relationship between prevalence rates of QT prolonga and water As concentrations; measuring QT interval may detect early cardiac As cardiac toxicity		
Mumford et al. (2007)			Changin to communication in the	and the second shift in the second second	

	Preventive	Strategies	s
Implemer	nt health risk as	ssessment ac	tivities
Health I	Protective	Guidance	Levels
	Human, Non-Cancer	Human, Cancer	Ecological
Convention	Exposure below threshold for adverse effect	Probability of a tumor is acceptably low	Exposure concentratio below threshold for adverse effect
Hazard Characterization Input	ADI, TDI, RfD, RfC, BMD, etc.	Cancer slope factor (CSF)	Predicted No Effect Concentration (PNEC)
Hazard Characterization Input Exposure Input	ADI, TDI, RfD, RfC, BMD, etc. Period average daily dose (PADD)	Cancer slope factor (CSF) Lifetime average daily dose (LADD)	Predicted No Effect Concentration (PNEC) Predicted environmental concentration (PEC)
Hazard Characterization Input Exposure Input Risk Metric	ADI, TDI, RTD, RTC, BMD, etc. Period average daily dose (PADD) Hazard quotient (HQ)	Cancer slope factor (CSF) Lifetime average daily dose (LADD) Excess lifetime cancer risk (ELCR)	Predicted No Effect Concentration (PNEC) Predicted environmental concentration (PEC) Hazard quotient (HQ)

			see		XIII
Drin an a non	king wate ctive volca -cancer he	r monitori ano showe alth risks	ing in a comr ed the follow (skin diseas	nunity ing lev e):	near els and
• 30 2)-year old a liters of wa	dult weigl ter per day	ning 70 kg dri /	nking	
	Site	Water (mg/L)	PADD (mg/kg/day)	ΗQ	
	Barangay A	o.4 mg/L	0.011	32	
	Barangay B	o.6 mg/L	0.017	50	
	Barangay C	o.3 mg/L	0.008	24	

Drin an a non • 7- 1	nking wate active volca -cancer he year old ch liter of wate	er monitor ano show ealth risks hild weighi er per day	ing in a com ed the follow (skin diseas ng 25 kg drin	munity ving lev ve): king	near rels and
	Site	Water (mg/L)	PADD (mg/kg/day)	ΗQ	
	Barangay A	o.4 mg/L	0.016	47	
	Barangay B	o.6 mg/L	0.024	70	
	Barangay C	o.3 mg/L	0.012	35	

Drinking water monitoring in a community near an active volcano showed the following levels and cancer health risks: • 30-year old adult weighing 70 kg drinking 2 liters of water per day				
Site	Water (mg/L)	LADD (mg/kg/day)	ELCR	
Barangay A	o.4 mg/L	0.005	7.5 x 10 ⁻³	
Barangay B	o.6 mg/L	0.007	1 x 10 ⁻³	
Barangay	0.3 ma/L	0.004	6 x 10-3	

Deventive Strategies... Implement environmental and biologic monitoring. Conduct long-term post marketing surveilance. Strengthen medical surveilance systems. Principle 15 of the Rio Declaration (1992) states, "In order to protect the environment, the precautionary approach shall be widely applied by States according to their capabilities. Where there are threast of serious or inreversible damage, lack of full scientific certainty shall not be used as a reason for postponing cost-effective measures to prevent environmental degradation."

Take home points

- Environmental issues affecting pollution of aquatic resources are contamination, biomagnification and bioaccumulation, and persistence.
- The health implications of aquatic contamination involve the following factors: exposure, pollutant and clinical effects.
- Important preventive strategies to address environmental contamination of aquatic resources are the conduct of environmental and biologic monitoring, medical surveillance and risk assessment.

