A TILAPIA HATCHERY WITH RECIRCULATING WATER SYSTEM

Rolando R. Platon, Ph.D.

The National Academy of Science and Technology, Philippines Regional Scientific Meeting, March 12-13, 2018 Cagayan De Oro City Tilapia Hatchery Systems

Ponds

Hapa in ponds

Photos courtesy of Ruel Eguia

Hapas in lakes/rivers/ impoundments

Photos courtesy of Ruel Eguia

Tanks

Photo courtesy of Ruel Eguia

BENEFITS OF RECIRCULATION

- Increased biosecurity

- Stable water conditions

- Reduced effluent discharge

Project Site

Google Earth

Pa

SK telecom, Google, IBCAO, Data SIO, NOAA, U.S. Navy, NGA, GEBCO, Landsat / Copernicus

SABAH

Google, NOAA, Data SIO, NOAA, U.S. Navy, NGA, GEBCO, Landsat / Copernicus

Google Earth

DigitalGlobe, Google

Google Earth

DigitalGlobe, Google

0

Design Features

One module of 4 tanks and sedimentation/biofilter tank

Tank dimensions 2m W x 6m L x 0.75 H

Sedimentation Tank

Schematic diagram of sedimentation tank

Bio Filter

Commercial biofilter substrates

Traditional Biofilter

View of net substrate in biofilter

Water Circulation

WATER FLOW DIAGRAM

Airlift pump at inlet of tank

Airlift pump at outlet of tank

Screen and standpipe at outlet

View of tank inlets

View of tank outlets

Life Support System

Air blowers

Water pumps

Water distribution pump

Generator

OPERATIONS

A. Broodstock Management

-Source: SEAFDEC AQD Binangonan Freshwater Station

-Strain : SEAFDEC selected strain (SST)

M and F stocked in separate tanks

Spawners

OPERATIONS

B. Pairing/spawning/fry collection

-M/F ratio - 1M:3F ,.....20M;60F / tank

-Fry appears (10±2) days after pairing

Fry collection with scoop net

Fry collection

21 days after pairing

Post-spawning collection of spawners

Examining mouth of females

Separating male from female spawners

Transferred to separate tanks

C. Fry rearing/nursery

- Fry collected transferred to rearing tank module

-Feeding with hormone treated feed for period of 21 days

Fry rearing tanks

D. WATER MANAGEMENT

-Probiotics added to tanks

-Sedimentation tanks cleaned regularly

- Settled sludge used as fertilizer

- New water added after every cleaning

Harvest

Fry / fingerling harvest

Scooping fry from harvesting net

Draining fry not collected by net

Sorting of fry / fingerlings

Estimating number of fingerlings

Packing

Packing with oxygen

Tying plastic bag tightly

Bags ready for transport

MARKET

Google, NOAA, Data SIO, NOAA, U.S. Navy, NGA, GEBCO, Landsat / Copernicus

Tulunan

Google, Data SIO, NOAA, U.S. Navy, NGA, GEBCO, Landsat / Copernicus

Google, Data SIO, NOAA, U.S. Navy, NGA, GEBCO, Landsat / Copernicus

SUSTAINABLE INTENSIVE AQUACULTURE

SUSTAINABLE INTENSIVE AQUACULTURE

Response to:

- Increasing global demand for aquatic food
 - Marine capture fisheries already at maximum yield

GOALS OF SUSTAINABLE AQUACULTURE INTENSIFICATION

More aquaculture products without increasing usage of land and water

Environment preservation

Economic and social sustainability

APPROACHES TO SUSTAINABLE AQUACULTURE INTENSIFICATION

- Bacterial biomass production
 - Ecological intensification of aquaculture

BACTERIAL BIOMASS PRODUCTION

BACTERIAL BIOMASS PRODUCTION

BACTERIAL BIOMASS PRODUCTION

Crab, et al, (2010)

ECOLOGICAL INTENSIFICATION OF AQUACULTURE

Multi-species with different feeding niches for more complex use of resources

FUTURE CHALLENGES

- Replacement of fish products as ingredients in feed

- Identification of microorganisms as effective inoculum for biomass production

Thank You