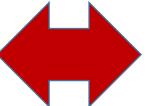

WATER SECURITY IN CAGAYAN DE ORO: INITIATIVES and CHALLENGES



6 CLEAN WATER AND SANITATION

WATER SECURITY

- harnesses water's productive power and minimizes its destructive force (too little – too much water)
- the reliable availability of an acceptable quantity and quality of water for human consumption and the ecosystem, in general
- Water security also means addressing environmental protection and the negative effects of poor management. (wikipedia)

WATER STRESS BY COUNTRY

ratio of withdrawals to supply

- Low stress (< 10%)
- Low to medium stress (10-20%)
- Medium to high stress (20-40%) High stress (40-80%)
- Extremely high stress (> 80%)

This map shows the average exposure of water users in each country to water stress, the ratio of total withdrawals to total renewable supply in a given area. A higher percentage means more water users are competing for limited supplies. Source: WRI Aqueduct, Gassert et al. 2013

WATER STRESS BY COUNTRY

ratio of withdrawals to supply

- Low stress (< 10%)
- Low to medium stress (10-20%)
- Medium to high stress (20-40%) High stress (40-80%)
- Extremely high stress (> 80%)

This map shows the average exposure of water users in each country to water stress, the ratio of total withdrawals to total renewable supply in a given area. A higher percentage means more water users are competing for limited supplies. Source: WRI Aqueduct, Gassert et al. 2013

WATER STRESS BY COUNTRY

Low THREATS to WATER SECURITY

Low to medium stress (10-20%)

Medium to high stress (20-40%) High stress (40-80%)

Extremely high stress (> 80%)

This map shows the average exposure of water users in each country to water stress, the ratio of total withdrawals to total renewable supply in a given area. A higher percentage means more water users are competing for limited supplies. Source: WRI Aqueduct, Gassert et al. 2013

1. Water wastage

1. Water Wastage

2. Pollution

1. Water wastage

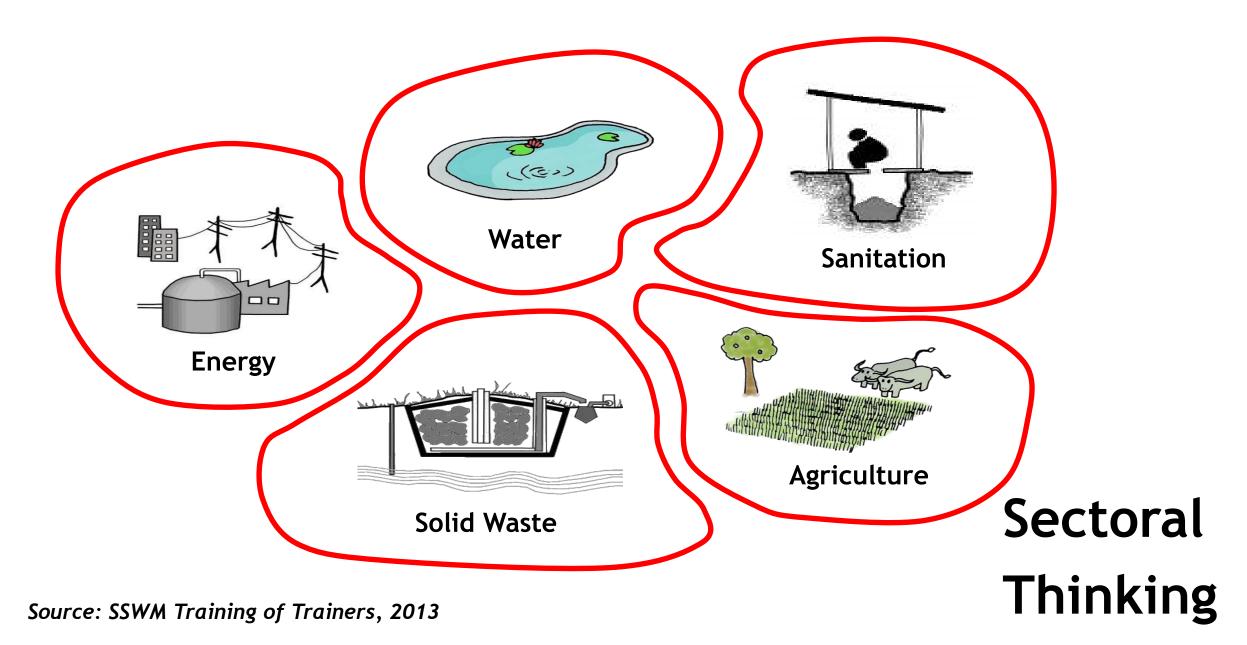
2. Pollution

3. Climate Change

1. Water wastage

3. Climate Change

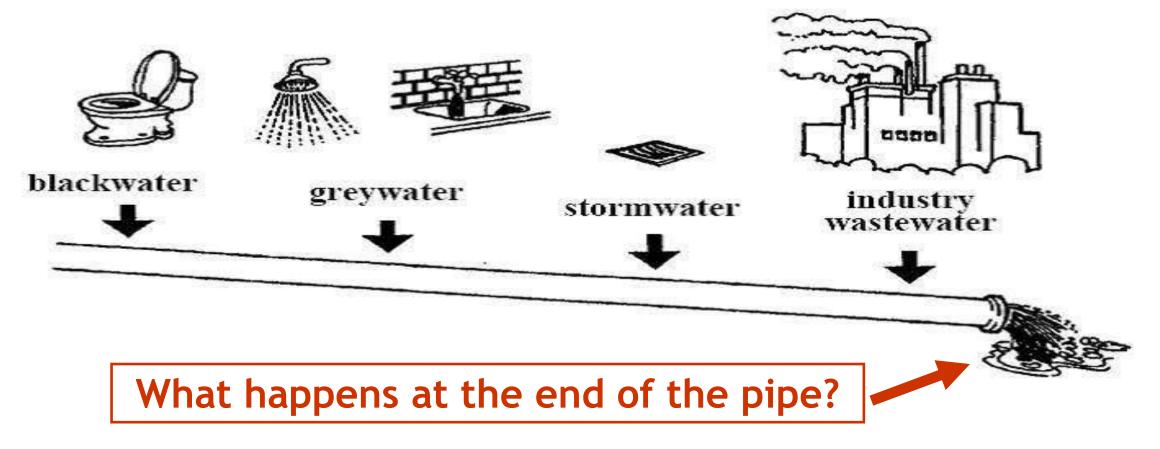
2. Pollution


3. Natural Hazard

THREATS to WATER SECURITY:

- 1. Water wastage
- 2. Pollution
- 3. Climate change
- 4. Natural hazards 🔴
- 5. Terrorism
- 6. Nuclear accident

WHY IS THIS SO? What's Going Wrong?

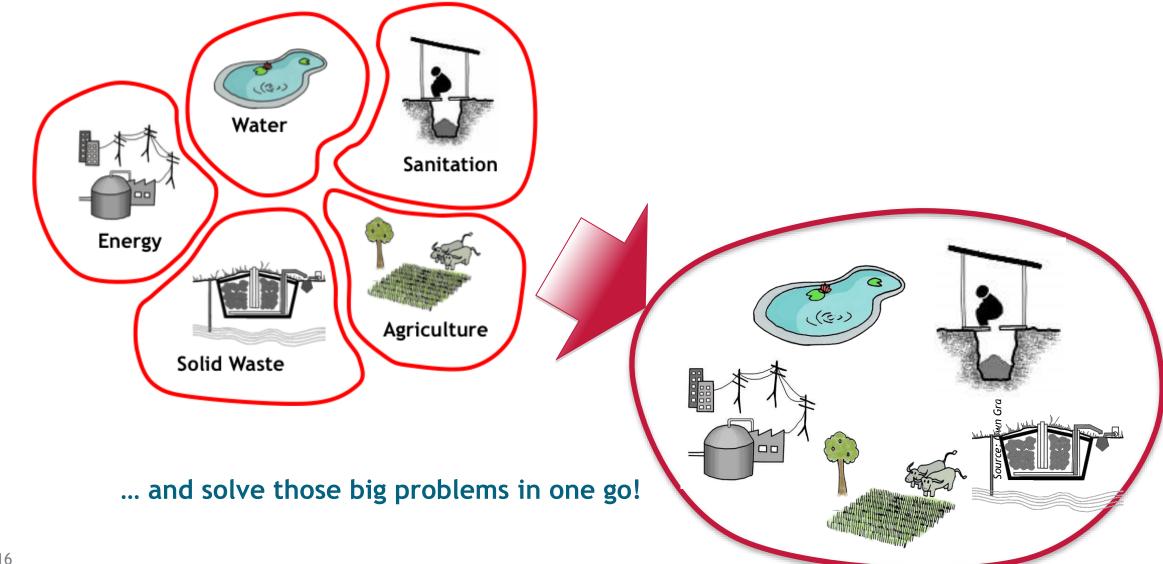


Source: http://www.wsp.org/userfiles/image/2009_JUL.jpg [Accessed: 23.03.2010]

Source: SSWM Training of¹Trainers, 2013

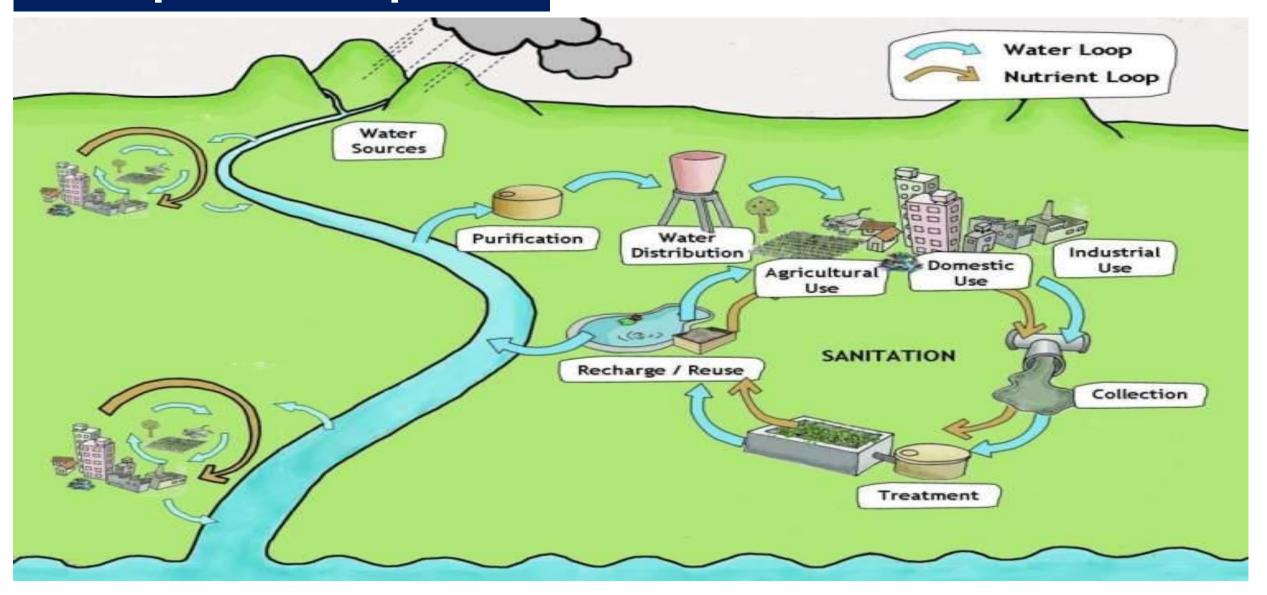
Today's Situation in general - Sanitation

Mixing Different Types of Wastewaters ...



Uncontrolled Discharge of Wastewaters

Source: 5SWM Training of Trainers, 2013


So, Let's Link the Water Cycle, the Nutrient Cycle and Sanitation ...

Closing and Linkingup the Loops

IWRM & SuSan

MAJOR THREATS to WATER SECURITY in CAGAYAN DE ORO

 17 December 2011 Typhoon Sendong: about <u>43%</u> of <u>total water</u> <u>supply capacity</u> was lost affecting about 56% of the population for at least 18 days; cost of rehabilitation about Php155M

MAJOR THREATS to WATER SECURITY in CAGAYAN DE ORO

 17 December 2011 Typhoon Sendong: about <u>43%</u> of <u>total water</u> <u>supply capacity</u> was lost affecting about <u>56%</u> of the population for at least <u>18 days</u>; cost of rehabilitation about <u>Php155M</u>

 22 December 2017 Typhoon Vinta: about <u>44%</u> of <u>total water</u> <u>supply</u> was lost affecting about <u>51%</u> of the <u>population</u> for <u>8</u> <u>days</u>; cost of <u>rehabilitation</u> about <u>Php52M</u>

MAJOR THREATS to WATER SECURITY in CAGAYAN DE ORO

- 17 December 2011 Typhoon Sendong: about <u>43%</u> of <u>total water supply capacity</u> was lost affecting about <u>56%</u> of the population for at least <u>18 days</u>; cost of rehabilitation about <u>Php155M</u>
- 22 December 2017 Typhoon Vinta: about <u>44%</u> of <u>total water supply</u> was lost affecting about <u>51%</u> of the <u>population</u> for <u>8 days</u>; cost of <u>rehabilitation</u> about <u>Php52M</u>
- Residential houses and relocations built-up around and close
 COWD's existing sources

MAJOR THREATS to WATER SECURITY in CAGAYAN DE ORO

- 17 December 2011 Typhoon Sendong: about <u>43%</u> of <u>total water supply capacity</u> was lost affecting about <u>56%</u> of the population for at least <u>18 days</u>; cost of rehabilitation about <u>Php155M</u>
- 22 December 2017 Typhoon Vinta: about <u>44%</u> of <u>total water supply</u> was lost affecting about <u>51%</u> of the <u>population</u> for <u>8 days</u>; cost of <u>rehabilitation</u> about <u>Php52M</u>
- Residential houses and relocations built-up around and close COWD's existing sources
- High system loss (NRW)

SENDONG: 100% RESTORED AFTER 25 DAYS

AFFECTED: 6 Wells Affected

DAMAGED: All 6 wells filled with mud, pumps, controllers, gensets broken; only the tripod survived

SENDONG:

AFFECTED: 6 Wells Affected

DAMAGED: All 6 wells filled with mud, pumps, controllers, gensets broken; only the tripod survived

VINTA: 100% RESTORED AFTER 8 DAYS

AFFECTED: 7 Wells Affected

DAMAGED: PRACTICALLY, NONE of the 7 wells were damaged since all 7 used submersible pumps, only 2 controllers, only 1 of 7 gensets

SENDONG:

AFFECTED: 2 Booster Stations in one site

DAMAGED: all 11 booster pumps, all controllers, 3 gensets, 3 chambers of collector wells filled with mud, transformers

SENDONG:

AFFECTED: 2 Booster Stations in one site

DAMAGED: all 11 booster pumps, all controllers, 3 gensets, 3 chambers of collector wells filled with mud, transformers

VINTA:

AFFECTED: 2 Booster Stations in one site

DAMAGED: 6 of 11 booster pumps, 1 set controllers, 3 gensets, 3 chambers of collector wells filled with mud

SENDONG:

AFFECTED: Office and entire Laboratory facility

DAMAGED: all equipment, supplies, materials & furniture; entire laboratory facility

SENDONG:

AFFECTED: Office and entire Laboratory facility

DAMAGED: all equipment, supplies, materials & furniture; entire laboratory facility

VINTA:

AFFECTED: 2 Booster Stations in one site

DAMAGED: steel cabinets, furniture & some supplies & materials; 1 laboratory equipment

WHAT HAS BEEN DONE SO FAR to ENSURE WATER SECURITY (2012 to 2018)

FOOTER GOES HERE

1. CLIMATE RESILIENCY

- Vulnerability Assessment (2016 onwards)
- Adaptation measures (2012 to 2022)
 - elevating critical facilities (controllers, laboratory, etc)
 - replacement of turbine with submersible pumps
 - isolation of critical facilities (2012 2022)

- Emergency Response Planning (2017 onwards)

ELEVATION of TRANSFORMERS during Vinta

ELEVATION of CONTROLLERS

Elevation of transformers during Sendong

New Elevation of controllers at BPS

Typical New Elevation of controllers at wells ELEVATION of LABORATORY FACILITY during VINTA

Location of Laboratory facility during SENDONG

5 SUBMERSIBLE BOOSTER PUMPS during VINTA

6 MORE TURBINE BOOSTER PUMPS FOR REPLACEMENT WITH SUBMERSIBLE PUMPS

2. NRW REDUCTION (2015 – 2022)

Latest NRW volume is enough to serve the projected population increase in 2030
recovered volume can defer extraction of more water for at least 10 to 15 years

3. SEPTAGE MANAGEMENT (2018 – 2019)

- preserve and protect groundwater and surface water
- sources from contamination
 - FS conducted in 2017
 - Completed TOR late 2017
 - Schedule to tender the Project 2018
 - hopefully, construction to complete in 2019
 - hopefully, operation to start in 2020

*** City Government of CDO already passed Septage Management Ordinance 13022 – 2015 and the corresponding IRR under EO No. 027, S-2018 Partnership for Sustainable Water Supply in the Cagayan de Oro River Basin

Ridge to Coast, Rain to Tap

Project facts

- Locations : CdO city & CdO river basin
- Period : Jan 2018 Dec 2022 (5 years)
- Budget : 6.1 million EUR = 363 million PHP
- Grant (49%): 3.0 million EUR = 179 million PHP
- Funding : Sustainable Water Fund (FDW), Netherlands Ministry of Foreign Affairs
- Topics: Sustainable access to clean drinking water & sanitation

Improved river basin management and safe deltas

NL Agency Ministry of Foreign Affairs

The Netherlands Red Cross

OTHER REFERENCES:

- WWAP (2012): The United Nations World Water Development Report 4. Managing Water under Uncertainty and Risk. URL: <u>http://unesdoc.unesco.org/images/0021/002156/215644e.pdf#</u> <u>page=406</u> [Accessed: 18.02.2013]
- GNEHM, F. (2012): Der Wasser-Fussabdruck der Schweiz. Ein Gesamtbild der Wasserabhängigkeit der Schweiz. URL: <u>http://www.deza.admin.ch/ressources/resource_de_209662.pd</u> <u>f</u> [Accessed: 10.07.2012].

THANK YOU for YOUR KIND ATTENTION!