TOWARD BUILDING A RESILIENT AND SUSTAINABLE WESTERN VISAYAS

Undersecretary Adoracion M. Navarro
Regional Development Office
National Economic and Development Authority

Presentation Flow

- Building resiliency through disaster risk reduction and management and climate change adaptation
- Ensuring sustainability through renewable energy

2017-2022 Philippine Development Plan's Overall Strategic Framework

2040

MATATAG, MAGINHAWA, AT PANATAG NA BUHAY

2022

TO LAY DOWN THE FOUNDATION FOR INCLUSIVE GROWTH, A HIGH-TRUST AND RESILIENT SOCIETY, AND A GLOBALLY-COMPETITIVE KNOWLEDGE ECONOMY

"MALASAKIT"
ENHANCING THE SOCIAL FABRIC

"PATULOY NA PAG-UNLAD"
INCREASING GROWTH POTENTIAL

Ensure people-centered, clean, and efficient governance

Expand economic opportunities

Advance technology adoption

Stimulate innovation

Pursue swift and fair administration of justice

IMPLEMENT STRATEGIC TRADE AND FISCAL POLICY, MAINTAIN MACROECONOMIC STABILITY, AND PROMOTE COMPETITION

Promote Philippine culture and awareness

Accelerate human capital development

Reduce vulnerability of individuals

Reach for demographic dividend

Ensure peace and security

Accelerate strategic infrastructure development

Ensure safety and build resilience

Ensure ecological integrity, clean and healthy environment

PDP 2017-2022 : Strategies on Disaster Risk Reduction and Climate Change Adaptation

Housing Sector

- ✓ Provide adequate transition houses and livelihood opportunities during early rehabilitation and recovery period
- ✓ Develop integrated neighborhoods and sustainable communities particularly for low-income households which are compliant with disaster risk reduction and management (DRRM) and climate change adaptation (CCA) requirements
- ✓ Adopt viable land acquisition approaches and fast-track the inventory of lands for socialized housing development to encourage people to move out of areas exposed to high risks of hazards

PDP 2017-2022 : Strategies on Disaster Risk Reduction and Climate Change Adaptation

Infrastructure Sector

- ✓ Promote climate and disaster-resilient structures and designs following established measures and standards
- ✓ Continue flood management initiatives

Agriculture Sector

- ✓ Accelerate construction of disaster- and climate-resilient, small-scale irrigation systems and retrofit existing ones
- ✓ Increase agricultural insurance to small farmers and fisherfolk

Social Development Sector

- ✓ Provide adequate mental health and psychosocial support to victims of calamities
- Continue reforms on education curriculum (integrating DRRM and CCA in the school curricula)

PDP 2017-2022 : Strategies on Disaster Risk Reduction and Climate Change Adaptation

Other Strategies

- ✓ Develop, maintain, and ensure the accessibility of climate and geospatial information
- ✓ Develop risk transfer mechanisms
- ✓ Promote business continuity planning
- ✓ Encourage and support innovation in export-oriented industries through investments, with focus on state-of-the-art disaster- and climate-resilient technologies

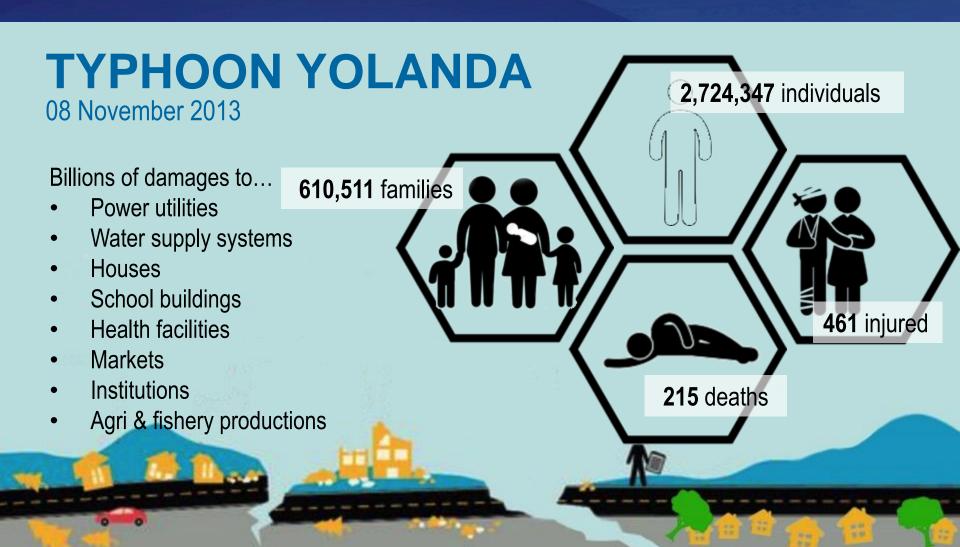
2008 Typhoon Frank 2011 Typhoon

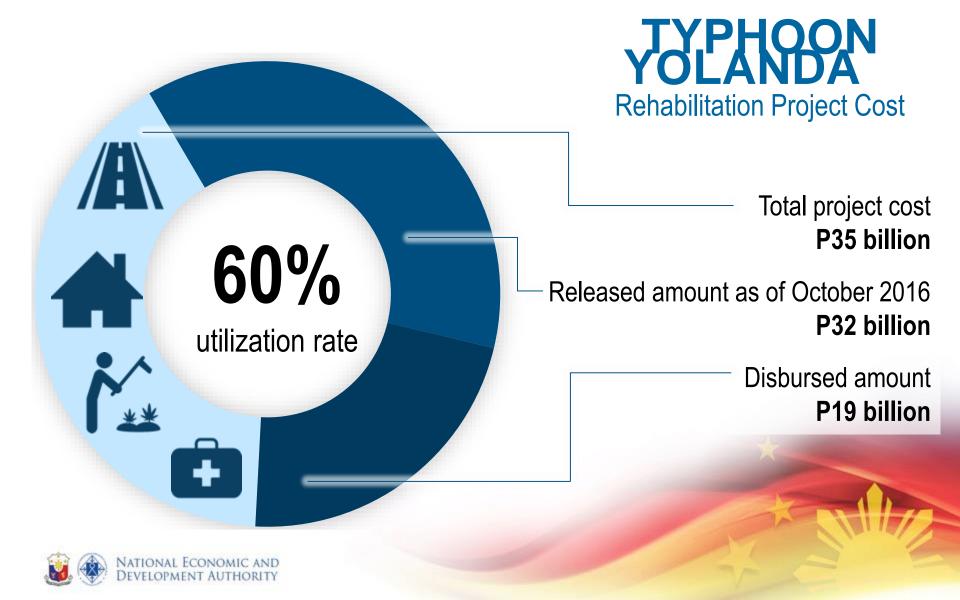
Typhoon Sendong

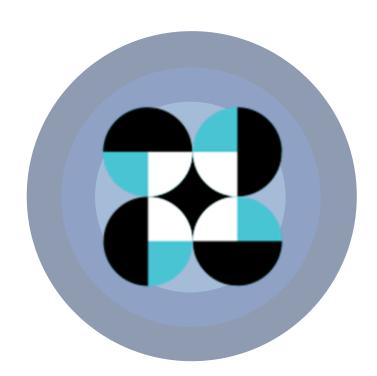
2012

Typhoon Quinta

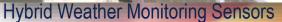
2013

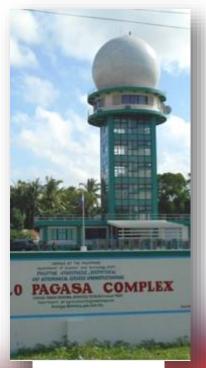

Typhoon Yolanda





Improvements in weather forecasting in the Visayas




DOST

Hybrid Weather Monitoring Sensors

Doppler Radar

Credits: RVDumpit, DOST-VI

Enhancement of Hazard Maps using LiDAR Mapping Technique


Orthophoto

Digital Surface Model

Digital Terrain Model

NEDA at the forefront in mainstreaming DRRM and CCA in local planning

neda

Reducing Vulnerabilities, and **Building Safe and Secure** Communities

This chapter takes a look of th momentum of its growth. On one by their poverty, are susceptible hand, these are construction who to economic and natural roles. substabilities, strengthen indes secure communities.

Assessment and C

The poor are the most volverable men society. As of 2015, powerty tecident population in Wintern Visions with a at 22.4 percent, which is higher than target of 18 percent. Despite the conresources afformed to help the underg the magnitude of poor individ Santlies remains high.

The absence of Souncial resources poor valuerable to hanger on dropping and of wheel, become of above and explostation, and the liabilities of society as they pimisalry.

The insofficient previous counterparts and lack of partners that can facilitate imof government programs a level, are assuring the major & slow implementation of interventions. Also, section programs such as the contransfer, social security teneral support, and shelter unistance coverage and benefits.

There is a need to develop a programs to protect their it their living conditions, and bu economic resilience.

Poor families, Negros Occihighest preverty incidence are

Figure 12.1 Pererty Incidence

Seems Phys. 45

The Lintsharon 2005; DSWD that profiles who are in the country, never on the great majority of in Western Visures live usily 13.2 percent of the

to 2015, the targeted 3 disabilitized tedroids with basic roctal service Familyang Pilipino program has already a ottes and municipality including those freing

Children. Persons below 18 years of ago. are considered stalnerable as they are anable to fully care of and protect themselves from abuse, neglect, cruelty, exploitation, or discrimination and are often characterized by their dependency on adults.' As of 2013, all LGUs have regunized inter-agency structures for children and other reduceable and disadvantaged groups where preventive

Assistance to street children and indigenous peoples (IF) were extended to 306 families as were a hard of 43,000 registered persons with educational assistance, limithood assistance. posts.

such for work, feeding program and values

Powerty peakes children to week. National data allow that in 2011, an extension 2.1 million children sone engaged in child labor. 97 percent of them under basardons labor conditions. No data in available for 2014 on measures and early interventions against any labor in the region, but it is necessited that form of abuse, violations and explorations: security was extended to 1,000 pursus of child laborers.

2003 and 570 families in 2006. This imbelled alloadstay in the region, of which 57 AG 1000

Figure 12.2 Registered Persons with Disability, 2016.

do net

Chapter 12 Students Submersions and Building Sale and Secure Communities : Max

VULNERABILITIES REDUCED AND SAFE AND SECURE COMMUNITIES BUILT

VULNERABILITIES OF INDIVIDUALS AND FAMILIES REDUCED

UNIVERSAL AND TRANSFORMATIVE SOCIAL PROTECTION PROGRAM ENHANCED

- Strengthen collaboration and enhance convergence of efforts among agencies
- Focused-targeting of poor families and areas
- Develop sustainable protection programs to reduce risks and vulnerabilities
- Strengthen implementation of labor standards and other working arrangements in companies
- Improve financial inclusion and access of the vulnerable and poor families
- Promote income diversification as safeguard to emergencies and threats of economic and natural shocks
- Intensify implementation of solutions to reduce housing backlog particularly of the lower income classes and vulnerable sector
- Provide adequate transition houses and livelihood opportunities to disaster victims during the response, early rehabilitation and recovery period

SAFE AND SECURE COMMUNITIES BUILT

DISASTER RESILIENCY OF INDIVIDUALS AND COMMUNITIES INCREASED

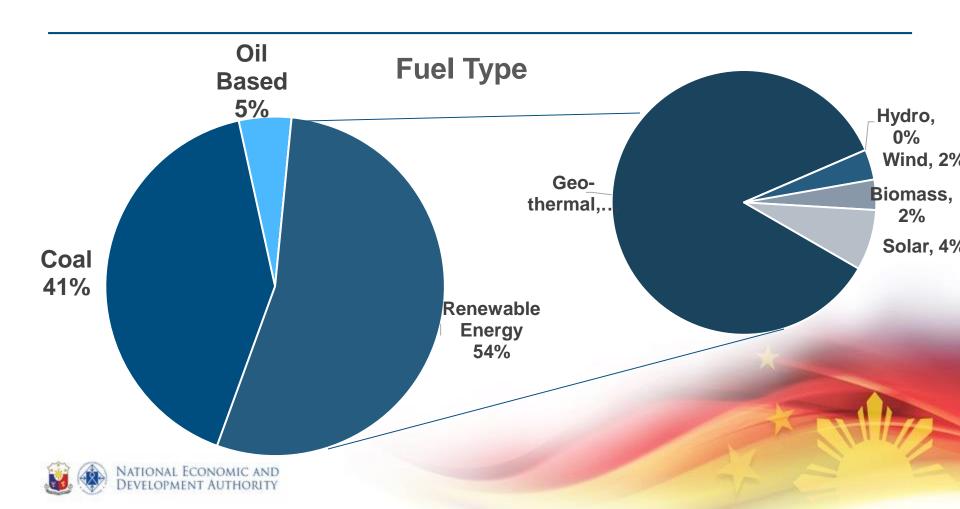
- Identify vulnerable and susceptible areas to quide building resettlement communities
- Regularly update DRR/CCA-enhanced plans
- Improve the region's coping capacity from natural and human-induced disasters
- Conduct regular DRRM capability-building trainings
- Develop social safety nets in rebuilding disasterstricken communities and areas in situations of armed conflicts

Name of Project/Description	Location	Cost (million)	Implementing Agency
Health Emergency Preparedness and Response -	Regionwide	275.9	DOH
Health Emergency Management			
Assess vulnerability and risk to geohazards of	Selected municipalities in	47.0	MGB
LGUs, particularly rain-induced landslides and	Aklan, Capiz, Iloilo, Antique		
floods			
Assess identified LGUs for sub-surface hazards	Guimaras	1.7	MGB
particularly sinkholes and subsidence in Jordan,			
Guimaras			
Incorporation of a DRR-CCA lens in the major local	17 LGUs in the Major River	1.8	DILG
plans of the LGUs	Basin Areas (Jalaur and Panay)		
Construction of Disaster Resilient Evacuation	Belison, Antique	150	Belison, Antique
Centers			
Construction of Multi-Purpose Covered	Patnongon, Anique	30	NHA
Court/Evacuation Center (Poblacion, Patnongon)			

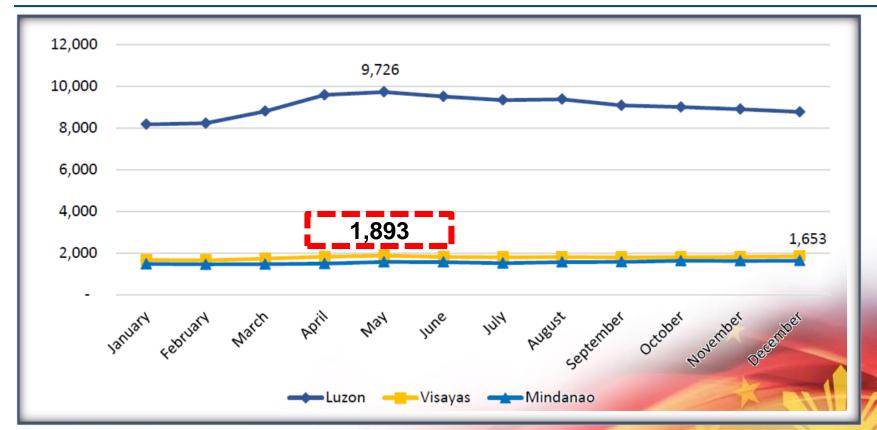
Name of Project/Description	Location	Cost (million)	Implementing Agency
Constructions of seawall	Selected municipalities in	150	DPWH
	Antique		
Acquisition of a 10-hectare lot and construction of	Pres. Roxas, Capiz	100	DILG/OCD
an ideal and complete evacuation center for 1,112			
vulnerable households or 5,556 individuals in 6			
coastal brgys.			
Construction of standard evacuation center in 4	Buenavista, Guimaras	100	LGU
municipalities (Buenavista, Jordan, Nueva			
Valencia, San Lorenzo) with complete amenities			
such as kitchen, quarters, etc			
Provision of Advance Warning System for	Iloilo City	50	Iloilo City
Earthquakes, Tsunamis			

Name of Project/Description	Location	Cost (million)	Implementing Agency
Provision of Early Warning System (EWS) to 180	Iloilo City	150	Iloilo City
barangays (such as rain gauge, siren, flooding			
EWS, earthquake-prone/faultline warnings)			
Establishment of satellite operations center in 7	Iloilo City	200	Iloilo City
Districts			
Provision of Advance Warning System for	Iloilo City	50	Iloilo City
Earthquakes, Tsunamis			
River control constructed along riverine area	lloilo	1,080	lloilo
Acquisition of Two (2) DRRMC Emergency	Passi City	10	Passi City
Vehicles			
Construction of ten (10) evacuation centers in the	lloilo	100	PDRRMO
province			

Name of Project/Description	Location	Cost (million)	Implementing Agency
Construction of Flood Control Facilities - 2.5 km	Calinog, Iloilo	30	OCD / DND /
floodway, excavation, masonry works, steelworks			DPWH
and riprap/slope protection at Brgy. Poblacion			
Construction of Flood Control - Construction of cut-	Leganes, Iloilo	120	LGU/DPWH
off channel connecting Buntatala River and Gui-gui			
creek, Municipality of Leganes			
Establishment of evacuation center for all residents	Sara, Iloilo	150	LGU-
			OCD/NDRRMC
Disaster Response and Management Program	Regionwide	216.90	DSWD



Name of Project/Description	Location	Cost (million)	Implementing Agency
Establishment of Local Conservation Areas in the Province of Negros Occidental	Negros Occidental	1.8	LGU
Support to the Local Conservation Areas in the Negros Occidental	Negros Occidental	0.500	LGU
Forest Land Use Planning	Negros Occidental	0.400	LGU
Provincial Crop Insurance Program	Negros Occidental	12	LGU
Livestock and Poultry Disaster Preparedness and Response Program	Negros Occidental	11	LGU
Establishment of Resettlement Sites and/Evacuation Centers	Negros Occidental	20	LGU



Visayas Gross Power Generation (2016)

Luzon, Visayas and Mindanao System Peak Demand, 2016 (in MW)

Visayas Installed, Dependable and Available Capacity from January – December 2016 (in MW)

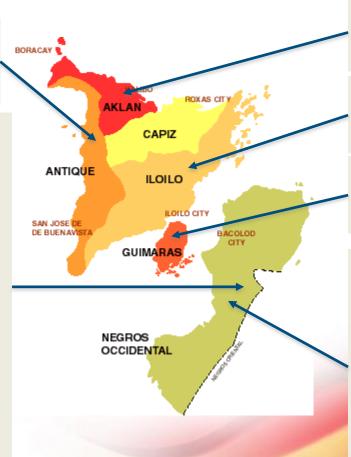
Fuel Type	Inst	alled	Depe	ndable		Availabl	е
ruei Type	MW	% share	MW	% share	Min	Max	Average
Coal	1,054	32.10	1,050	37.33	320	1,048	805
Oil Based	655	19.95	434	15.43	202	445	390
Natural Gas	1	0.03	0	0	0	0	0
Renewable Energy	1,574	47.93	1,329	47.24	535	1,346	1,113
Geothermal	965	29.38	813	28.90	384	798	702
Hydro	20	0.61	18	0.64	6	18	12
Wind	90	2.74	90	3.20	1	90	45
Biomass	101	3.08	77	2.74	18	67	59
Solar	399	12.15	331	11.77	126	373	295
TOTAL	3,284	100.00	2,813	100.00	1,057	2,839	2,308

Required Capacity Addition in Visayas, 2016-2030

Type of Power Plant	System Peak Demand + Reserve, MW	Existing Capacity , in MW	Committed Capacity, in MW	Required Capacity Addition, MW
Baseload (Coal Geothermal, Natural Gas*, Nuclear, Biomass**, and Hydro***	3,684	1,390	326	1,968
Mid-merit (Natural Gas and all others)	1,500	0	0	1,500
Peaking (Oil, Solar-PV daytime and Wind)	796	629	17	150
TOTAL Source: Department of Energy	5,980	2,019	343	3,618

Committed and Indicative Power Plant Projects in Visayas, as of May 2017 (in MW)

Type of Power Plant	Committed	Indicative
Coal	135	900
Oil	8	40
Geothermal	50	40
Hydropower	31.1	705.34
Wind	0	1,217.75
Solar	65.67	539.63
Biomass	178	14.5
Battery	-	130
TOTAL	467.77	3,627.22


Completed Renewable Energy Projects in Western Visayas

HYDROPOWER:

 8MW Villasiga Hydroelectric Power Project

SOLAR:

- 22MW San Carlos Solar Power Project Phase I-A and I-B (SACASOL I-A&I-B)
- 23MW San Carlos Solar Power Project Phase I-C and I-D (SACASOL I-C&I-D)
- 132.5MW Cadiz Solar Power Project
- 48MW Manapla Solar Power Project (SACASOL III)
- 32MW Islasol Solar Power Project
- 25.01MW Silay Solar Power Project

WIND:

 36MW Nabas Wind Power Project

SOLAR:

 5.67MW Miag-ao Solar Power Project

WIND:

 54MW San Lorenzo Wind Power Project

BIOMASS:

- 21 MW FFHC Bagasse-Fired Cogeneration Power Plant
- 20.58 MW HPCo Bagasse Cogeneration Power Plant Project
- 34 MW VMCI Bagasse-Fired Cogeneration Power Plant
- 46 MW URC Bagasse-Fired Biomass
- Cogeneration Power Plant Project

Ongoing Renewable Energy Projects in Western Visayas

Project Name	Company	Location	Project Status
SOLAR POWER			
58.98MW SACASUN Solar Power Project	San Carlos Sun Power Inc.	San Carlos City	On-going commissioning. Subject for on-site validation of its Successful Commissioning
18MW La Carlota Solar Power Project (SACASOL II-A)	Negros Island Solar Power Inc.	La Carlota City	Amended DOC to merge SACASOL II-A and II-B.
14MW La Carlota Solar Power Project (SACASOL II-B)	Negros Island Solar Power Inc.	La Carlota City	II / (and II D.

Ongoing Renewable Energy Projects in Western Visayas

Project Name	Company	Location	Project Status
HYDROPOWER			
5.1MW Igbulo (Bais) Hydroelectric Power Project	•	Igbaras, Iloilo	Pre-construction - 67.85% Construction – 43.9%
18MW Timbaban Hydroelectric Power Project	Oriental Energy and Power Generation Corporation	Madalag, Aklan	On-going construction
WIND			
Pulupandan Wind Power Project	FirstMaxpower International Corporation	Pulupandan, Negros Occidental	On-going acquisition of relevant permits under Pre-Construction Stage. Subject for on-site monitoring.

Challenges in Visayas

- Congestion issues in Negros Island oversupply of solar energy capacity, due to limited transfer capacities of transmission between the islands
- Need for upgrading of submarine cables to interconnect sub-grids in Visayas
- Need for more investment in power plants and transmission system capacities

Challenges in Western Visayas

- High cost of electric power
- Absence of electricity in some remote areas or sitios
- Limited island-to-island interconnection

Awarded Renewable Energy Projects in Western Visayas (as of June 2017)

Aklan

Hydro: 3

Wind: 4

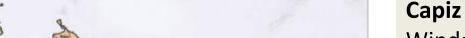
Solar: 4

Antique

Hydro: 9

Solar: 1

Negros Occidental


Hydro: 11

Wind: 4

Solar: 20

Biomass: 13

Geothermal: 2

Wind: 1

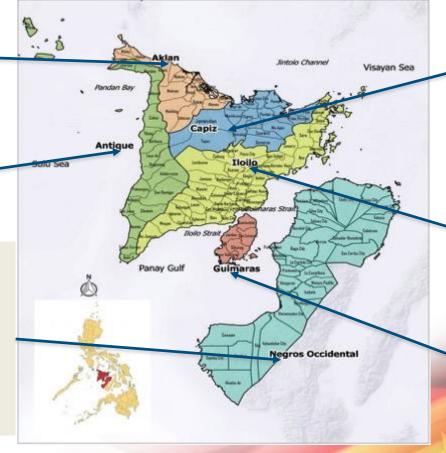
Solar: 2

Biomass: 1

lloilo

Hydro: 1

Wind: 2


Solar: 4

Biomass: 2

Guimaras

Wind: 3

Source: DOE

Western Visayas RDP Strategy

 Upgrade and install transmission lines, maintain reliability, and ensure the security of power supply

Specific steps

- Expand the implementation of the Household Electrification Program through RE
- Fast-track the upgrading and uprating of the Cebu-Negros-Panay Transmission Grid
- Ensure timely coordination between ERC and DOE on new power projects

Recommendations

- Private Sector participation in small, isolated or island grids (which are deemed unviable by electric cooperatives) is encouraged.
 - may apply as Qualified Third Party and provide electricity services with subsidy for cost recovery through the Universal Charge for Missionary Electrification
- The government enjoins the private sector to utilize innovation in the power sector, and encourage the use of Renewable and Clean Energy

