PHYSICS FROM PLANCK SCALE TO BILLION PLUS LIGHTYEARS

Christopher C. Bernido, Ph.D.
Research Center for Theoretical Physics
Central Visayan Institute Foundation Jagna, Bohol, Philippines

NAST Lecture Series, Tagbilaran City
November 21, 2017

The laws and principles of SCIENCE are essentially unchanged.

Newton's Laws (1680's) Electromagnetism (1800's)
Quantum Mechanics (1930's)
Thermodynamics (1900's)
Etc.

TECHNOLOGY, HOWEVER, RAPIDLY CHANGES.

 Slide Rules to Calculators Landlines to wireless Cell phonesScalpels to Laser Surgery
Bulky Monitors to flat Screens
Big Computers to Laptops
Overhead Projectors to LCD's
Fossil fuel to Solar and Nuclear energy, etc.

The basis for powerful technological innovations is Science.

MATHEMATICS

CHEMISTRY

GEOLOGY / METEOROLOGY

EXAMPLE: Contribution to Chemistry

Pauli's Exclusion Principle obeyed by all electrons

 in all the atoms.

Wolfgang Pauli
(Nobel Prize in Physics, 1945)

Periodic Table of Elements

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	H Hytrosen	Atomic \# Symbd ${ }_{\text {Namion }}^{\text {Natic }}$ Uass	C	Solid				Metals			Nonm	tals						2 He Hetum
2	$\begin{aligned} & 3 \\ & \mathbf{L i}^{\text {Litum }} \\ & \hline 6.94 \end{aligned}$	Be 	$\begin{aligned} & \mathrm{Hg} \\ & \hline \mathrm{H} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Liquid } \\ & \text { Gas } \end{aligned}$		$\begin{aligned} & \frac{\text { D }}{\hat{\lambda}} \\ & \frac{\text { Ben }}{3} \end{aligned}$		Lanthanoids		0 0 \vdots $\overline{3}$		$\begin{aligned} & \text { z } \\ & \frac{0}{0} \\ & 0 \\ & 0 \end{aligned}$	B ${ }_{\substack{\text { Boos } \\ \text { los.81 }}}$			$\begin{aligned} & 8 \\ & 0 \\ & \text { Oxygen } \\ & 15.5994 \end{aligned}$ 15.9994		10 Ne Nen 20.07 187
3	Na ${ }^{\text {Sadatimen}}$	Mg ${ }_{2}^{242050} 5$	Rf	Unknown		$\frac{\stackrel{0}{\omega}}{0}$		Actinoids		$\frac{\text { \% }}{\omega}$		$\stackrel{\circ}{\circ}$	13 Al ${ }_{20}^{2359315358}$			$\begin{aligned} & 16 \\ & \text { S } \\ & \text { sulutue } \\ & 3220055 \end{aligned}$		$\begin{aligned} & 18 \\ & \mathrm{Ar} \\ & \text { Angon } \\ & \text { 39948 } \end{aligned}$
4	$\begin{aligned} & 19 \\ & \mathbf{K} \\ & \begin{array}{l} \text { Potassium } \\ \text { ancose } \end{array} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} 20 \\ \mathrm{Ca} \\ \text { Calaidm } \\ \text { 4a0:8 } \end{array}$		\qquad	$\begin{aligned} & 23 \\ & \mathbf{V} \\ & \text { Vanasum } \\ & \text { so.0415 } \end{aligned}$			\square								34 Se $\substack{\text { Seenum } \\ 78.58}$		36 Kr Kyryen 83788
5			$\begin{aligned} & 39 \\ & \mathbf{Y} \\ & \text { Ytrium } \\ & 38505055 \end{aligned}$											$\begin{array}{\|l\|} \hline 50 \\ \mathrm{Sn} \\ \mathrm{Tn} \\ \hline 18.710 \end{array}$		52 Te Tentime i2ten	$\begin{aligned} & 53 \\ & \text { I } \\ & \text { lodine } \\ & 122.5047 \end{aligned}$	$\begin{array}{\|l\|} \hline 54 \\ \mathrm{Xe} \\ \text { Xeman } \\ 131238 \end{array}$
6	Cs ${ }_{1}^{\text {Caseimm }}$	Ba ${ }_{\substack{\text { Batim } \\ 13727}}$	57-71			$\begin{aligned} & 74 \\ & \hline \text { W } \\ & \hline \text { Wrosen } \\ & \text { tase } \end{aligned}$				$\begin{aligned} & 78 \\ & \text { Pt } \\ & \text { Platinum } \\ & 195.084 \end{aligned}$								
7		88 Ra Rasiom ${ }_{\substack{\text { Rasiom } \\ \text { R23 }}}^{\text {Ren }}$	89-103		$\begin{array}{\|l} 105 \\ \mathrm{Db} \\ \text { Dubhum } \\ \text { Dubzi) } \end{array}$	106 Sg Sageroum zeos				110 DS Dasmatain (271)	111 Rg Rerseim (122)	en 112 Uub Uunt (2asb)			$\begin{aligned} & 115 \\ & \text { Uup } \\ & \text { Uneram } \\ & \text { nesen } \end{aligned}$	$\begin{array}{\|l} 116 \\ \text { Uuh } \\ \text { Uunherem } \\ \text { numerex } \end{array}$	117 Uus Unrestom	118 Uuo Unenatimin (284)

For elements with no stable isotopes, the mass number of the isotope with the longest half-life is in parentheses.

Design and Interface Copyright © 1997 Michael Dayah (michael@dayah.com). http://www.ptable.com/
Ptable

http://www.ptable.com/

EXAMPLE: Contribution to Biology

Discovery of the DNA structure as a double helix by Crick and Watson.

https://www.geneticliteracyproject.o rg/2013/12/13/scientists-discover-second-code-hiding-within-dna/

Francis Crick (Physicist) and James Watson (Biologist)
http://www.irishtimes.com/life-and-style/people/sixty-years-of-dna-it-changed-our-understanding-of-life-1.1365885

EXAMPLE: Contribution to Mathematics

Isaac Newton invented Calculus

eXAMPLE: Contribution to Mathematics

Paul Dirac invented the Dirac Delta Function.

... mathematical beauty "is almost a religion to me."

- P. A. M. Dirac
(Nobel Prize in Physics)

EXAMPLE: Contribution to Mathematics

https://www.youtube.com/watch?v=AmUI2qf9uyo

EDWARD WITTEN

Fields Medal (1990):
regarded as the highest award in Mathematics

Although he is definitely a physicist, his command of mathematics is rivaled by few mathematicians, and his ability to interpret physical ideas in mathematical form is quite unique. Time and again he has surprised the mathematical community by a brilliant application of physical insight leading to new and deep mathematical theorems... [H]e has made a profound impact on contemporary mathematics. In his hands physics is once again providing a rich source of inspiration and insight in mathematics.

- M. Atiyah

Typical Scales and Sizes of Objects

ITEMS TO BE MEASURED	Approximate size in centimeter
Thickness of a piece of chalk	$10^{0}=\mathbf{1 ~ c m}$
Thickness of human hair	$10^{-2} \mathbf{~ c m ~ = 1 ~ c m ~ / 1 0 0 ~}$
Size of an atom	$10^{-8} \mathbf{~ c m}$

Typical Scales and Sizes of Objects

ITEMS TO BE MEASURED	Approximate size in centimeter
Size of proton	$10^{-13} \mathbf{~ c m ~}$
Size of electron	Less than $10^{-17} \mathbf{~ c m}$
Size of universe at time 10^{-34} second	$10^{-29} \mathbf{~ c m}$
Planck scale	$10^{-33} \mathbf{~ c m}$

THE MATERIAL UNIVERSE

Galaxies: stars, planets, etc.

Terrestrial Objects: chairs, plants, humans, piece of chalk, etc.

Molecules

Atoms

Baryons: Protons \& Neutrons

Quarks \& Leptons (electrons, neutrinos, etc.)

Areas in Physics:

- Condensed Matter Physics
- High Energy Physics
- Astrophysics
- Particle Physics
- Laser Physics
- Instrumentation Physics
- Theoretical Physics
- Biophysics
- Geophysics
- Econophysics
- Medical Physics
- Cosmology, etc ...

BIOPHYSICS :

Example: Protein Folding Problem

MYOGLOBIN

NEUROPHYSICS :

How do neurons in our brain encode information? Vol 17 (2012) 23-33
(0) Word Scientific Publishing Company

DOI: 10.1142K2010194512007908

ON A FRACTIONAL STOCHASTIC PATH INTEGRAL APPROACH IN MODELLING INTERNEURONAL CONNECTIVITY

CHRUSTOPHER C BERNIDO AND M. VICTORIA CARPIO-BERNIDO

Premarch Center for Theoretioal Physics, Ocntral Visapan Institute Foundation, Jagma, Eahal © ©008, Phulipplnes
E-mall chernuldothmazom com

A fractional stochnstic path integrail approach is presented as a natural framework for treating the randon distribution of possible communieation chains in the synaptic transmission of signals betwoen initiator and distant target receptor neurons. Fractional Erownian motion parametrixation is invoked to aceount for strong correlations betwoen exgments of a neuronall communicstion chain. We then obtain the probability density function (pdf) for the location of the target receptor neuron in terms of the Hurst indax that classifies the dynamiss into short-memory or long-memary domains. This pdf obtained by the path integral approsch is a fundamental solution of the corresponding Folker-Plandk equation.

ON NEURON MEMBRANE POTENTLAL DISTRIBUTIONS FOR VOLTAGE AND TIME DEPENDENT CURRENT MODULA TION

J. B. SALIG, JR
Physics Depariment, Misusis Universiry
7200 Onawiz Ciry 2 Philippines
M. V. CARPIO-BERNIDO and C C BERNIDO
Research Cener for Thearaical Physica, Cenural Waryan Insimue Foundaion
Jagna, 6308 Bahol Phulipphes
chernido mapgcom com
J. B. BORNALES
 9200 I gan Cly, Philippines
jinkybarnaler agmuliceduph

Tracking variations of neuronal membrane polential in response to moliple synaptic inputs remains an important open field of investigation since information about neural network behavior and higher brain functions can be inferred from sach studies. Mach experimental work has been done, with recent advanass in multi-electrode recondings and imaging technology giving exciting resalts However, experiments have also raised questions of compatibility with available theoretical models Here we show how nethods of modem infinie dimensional analysis allow closed form expoessions for important quantities rich in information sach w the conditional probability density (cpd). In particular, we use a Feymman integral approach where fluctuations in

PHYSICS OF COMPLEX SYSTEMS :

Landfall or not? Forecasts disagree on path of dangerous Typhoon Hagupit as it nears the Philippines

http://www.washingtonpost.com/blogs/capital-weather-gang/wp/2014/12/03/landfall-or-not-forecasts-disagree-on-path-of-dangerous-typhoon-hagupit-as-it-nears-the-philippines/

Typhoons are large-scale single vortices.

Hurricane Isabel (2003) as seen from orbit during Expedition 7 of the International Space Station. The eye, eyewall, and surrounding rainbands, characteristics of tropical cyclones, are clearly visible in this view from space. https://en.wikipedia.org/wiki/Tropical_cyclone
www elsevier.oomilocste/pla

Modified diffusion with memory for cyclone track fluctuations

Christopher C. Bernido ${ }^{\text {,3* }}$. M. Victoria Carpio-Bernido ${ }^{\text {a }}$, Matthew G.O. Escobido ${ }^{\text {b }}$

ARTICLE INFD

Arackehtray:

Rrophed 28 Mamh 2014
Rncehed lin revied form 1 June 2014
Acceped 2 June 2014
Aralable online 5 June 2014
Commulaned by CR Doering

Kywarts

Exponentialy modifled Erownian motlon
Gycione made flumurione
Fhamullone wich memory

ABSTRACT

Fluctuations in a time series for tropical cyclone tracks are imestigated hased on an exponentially modified Brownian motion. The mean square displacement (MSD) is ewaluated and compared to a recent work on cyclone tracks based on

SOLAR PHYSICS:

Understanding Space Weather \& Geomagnetic Fluctuations

PHYSICS OF COMPLEX SYSTEMS :

Searching for Food

http://www.uni-leipzig.de/~diff/powerpoint_presentations/pdf/klafter.pdf

EARTH AND MARINE PHYSICS :

EARTH AND MARINE PHYSICS :

The past 30 years witnessed the loss of half the coral cover of the Great Barrier Reef due to elevated sea surface temperature, ocean acidification, and typhoons, among others.
http://www.aims.gov.au/documents/30301/2107350/Acidification.pdf/4224fe9f-efd2-
4f91-a7b2-604137a87f2d

https://thumbnails.trvl-media.com/zcvYGoswHQ7jvcxujhBOVsW2jTI=/768x432/images.trvl-media.com/media/content/shared/images/travelguides/destination/889/Great-Barrier-Reef-29303.jpg

https://www.vox.com/science-and-health/2016/11/29/13781434/great-barrier-reef-coral-dead

ATMOSPHERIC PHYSICS :

Comparing Fluctuations in CO_{2} Levels and Percent of Great Barrier Reef (GBR) Coral Cover

THE SAME MEMORY FUNCTION

$$
\square(T-t)^{\frac{(\mu-1)}{2}}
$$

Geochemistry

Soft
Matter
Complex
Systems

Big Data Analytics

Physics, Biochemistry, Mathematics

Evolution Biology

The Coral Triangle

Contains 30 percent of the world's reefs and more than 3,000 species of fish

- Coral Triangle Core \bullet Reefs Region

Students sorting and classifying microorganisms from the sea.

Sorting and classifying microorganisms from the sea.

Cycloscala above is modelled mathematically below:

$$
[x, y, z]=\left[75 \cos (2.2 t), 10 t^{2},-75 \sin (2.2 t)\right]
$$

Growth as a function of time t :

$$
[x, y, z]=\left[75 \cos (2.2 t), 10 t^{2},-75 \sin (2.2 t)\right]
$$

Tube radius r as a function of time t (with Ribs):
$10 \exp \left(1.6(\sin (6.8 t))^{22}\right)+(2+t)^{2}$

Cycloscala hyalina Turkey, Hatay, Iskenderun NMR 32389. Common size 8 mm

Taxonomic Classification of Mollusks

SPECIMEN	Primary Structural Curve Parameters			
	a	b	c	d
Cycloscala from Jagna Bay	75	2.2	10	2
Cycloscala hyalina from Turkey	$\sqrt{t} \exp \left(\frac{t}{1.7}\right)$	5.5	1	3.2

C. Bernido et al, AIP Conference Proceedings 1871, 060005 (2017).

ECONOPHYSICS :

IBM Closing Price on 21 September 2015

COSMOLOGY:

MASS OF UNIVERSE:

Dark Matter :

Is it composed of new types of Fundamental Particles?

Adopted from: Physics Today April 1979, p. 41

METHODS AND APPLICATIONS OF WHITE NOISE ANALYSIS IN INTERDISCIPLINARY SCIENCES

Analysis, modeling, and simulation for better understanding of diverse complex natural and social phenomena often require powerful tools and analytical methods. Tractable approaches, however, can be developed with mathematics beyond the common toolbox. This book presents the white noise stochastic calculus, originated by T Hida, as a novel and powerful tod in investigating physical and social systems. The calculus, when combined with Feynman's summation-over-all-histories, has opened new avenues for resolving cross-disciplinary problems. Applications to real-world complex phenomena are further enhanced by parametrizing nonMarkovian evolution of a system with various types of memory functions. This book presents general methods and applications to problems encountered in complex systems, scaling in industry, neuroscience, polymer physics, biophysics, time series analysis, relativistic and nonrelativistic quantum systerns. 8968 he

World Scientific www.woridscientific.com

METHODS AND APPLICATIONS OF WHITE NOISE ANALYSIS IN INTERDISCIPLINARY SCIENCES

Christopher C Bernido M Victoria Carpio-Bernido

THANK YOU!

The parameters a, b, c, d characterize the primary structural curve of the shell.

$$
\begin{aligned}
& x=a \cos (b t) \\
& y=c t^{d} \\
& z=-a \sin (b t)
\end{aligned}
$$

$$
a=75, \quad b=2.2, \quad c=10, \quad d=2
$$

