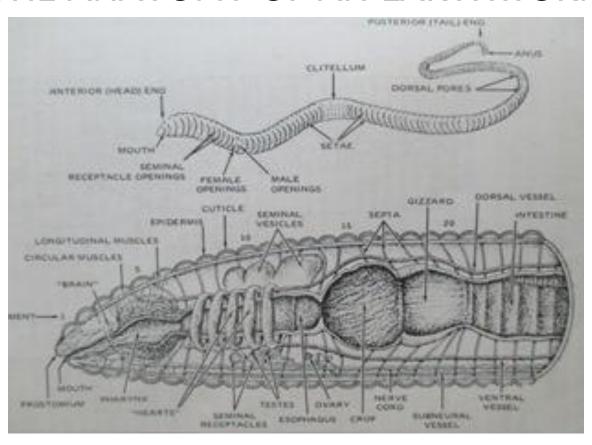
VERMICOMPOSTING IN THE PHILIPPINES

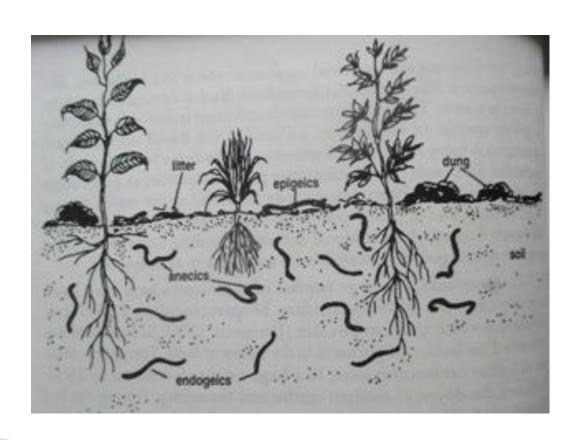
Rafael D. Guerrero III, Ph.D. Academician National Academy and Technology, Philippines

INTRODUCTION

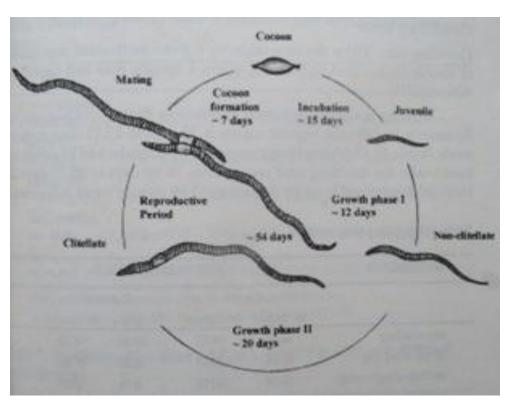
Vermi - Latin for "worm"


Vermicomposting – the aerobic production of compost using earthworms and biodegradable materials

Vermicompost – an excellent soil enhancer and bioactive fertilizer for organic farming **Vermiculture** – the farming of earthworms


What are earthworms?

- Harmless segmented invertebrates (annelids)
- Not parasitic
- Soft-bodied, with no special covering
- Breathe through their skin
- Feed on moist organic material rich in bacteria and fungi
 - Hermaphroditic or parthenogenetic
- There are around 4,000 species in the world; about 29 have been identified in the Philippines


THE ANATOMY OF AN EARTHWORM

Classification of Earthworms

Life Cycle of an Earthworm

VERMICOMPOSTING WORMS

- (1) Eisenia fetida "manure worm"
 - a temperate species

- (2) *Eudrilus eugeniae –* "African night crawler"
- a tropical species from West Africa;
 introduced in the Philippines in 1982

REQUIREMENTS OF COMPOSTING

C/N Ratio

- The balance of carbohydrates and nitrogenous compounds required by microorganisms for energy and growth. The ideal ratio is 25:1.

Water

- Required by microorganisms for growth
- The favorable moisture level is 60-80%

Oxygen

- Aerobic bacteria require oxygen for respiration.
- Loose and small particles hasten aeration.

Temperature

- Influence rate of decomposition
- The range of 25-30 degrees Celsius is desirable for tropical conditions.

THE VERMICOMPOSTING PROCESS

Collection and transport of biodegradable

materials

Shredding of materials with a machine

Thermophilic (40 degrees Celsius or more) anaerobic decomposition of processed materials for 1-2 weeks

Laying out of processed materials (substrate)

in a culture unit

Checking for moisture of substrate and predator control

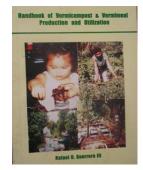
Harvesting of vermicompost and EW biomass

Processing of vermicompost

TIMELINES OF THE VERMICOMPOSTING INDUSTRY

- Early 1980s
- Studies on the culture of the "African night crawler" (ANC) for producing vermicompost (VC) using pig manure (Guerrero et al., 1982)

Yield and cost of producing pechay (*Brassica compensis*) with VC and complete fertilizer (CF) application

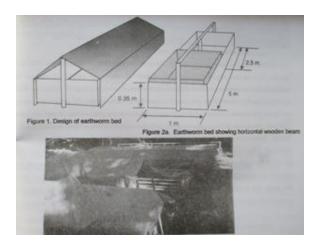

Treatment	Mean yield/plot (kg)	Cost of fertilizer/plot (P)
VC (100%)	 4.1	2.25
VC (50%) +	4.7	3.93
CF (50%)		
VC (25%) +	4.6	4.78
CF (75%)		
CF (100%)	3.7	5.62

Mid-1980s - Mid-1990s Technology extension through lectures, trainings, demonstrations and publications

Late 1990s

The Buro-Buro Vermi Farm (Brgy. Concepcion, Talisay City, Negros Occidental

- first commercial adoption of the vermicomposting technology

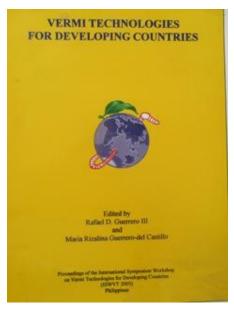


Batchoy and Pamela Henares

In the 2000s
Guerrero and Guerrero (2006)
Yield and cost of eggplant fertilized with VC and CF

Treatment	Yield/plant (g)	Net return (P)
Control	12.5	1.56
VC only	76.2	8.25
CF only	123.7	13.50
VC + 50% CF	146.7	16.50

- Cruz (2005) in Brgy. Sum-ag, Bacolod City
 - determined the production cost of VC (cow manure + bagasse + mudpress) to beP3.53/kg
 - determined cost of ANC to be P7.06/kg



Holding of the 1st International Symposium-Workshop on Vermi Technologies for Developing Countries

PCAMRD, Los Banos, Laguna Nov.16-18, 2005

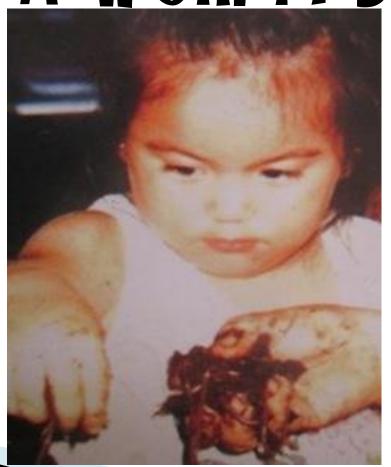
The National Vermicompost Production Program (2006–07)

- funded by the NEDA with P17.5 M
- conducted by State Colleges and Universities in 16 regions; coordinated by PCAMRD-DOST
- training of trainors, equipment, IEC materials

- The Present (2016)
 - The Kahariam Vermi Farm in Brgy. Adya, Lipa City, Batangas
 - Has 1.6 hectares of outdoor culture area with covered sheds; using horse manure from more than 20 race horse farms in Batangas
 - Produces 4.5 tons/day of "Vermicast" registered with the Fertilizer and Pesticide Authority (P285/bag of 50 kg)
- Certified organic by the OCCP

THE KAHARIAM VERMICOMPOSTING MODEL

SUMMARY


Key Drivers of the Vermicomposting Industry

- (1) Scientific studies were conducted as a basis for the technology.
 - (2) Technology dissemination was done.
 - (3) The farmers/users were involved.
 - (4) Government support was provided.
 - (5) Private sector innovation came about.

State of the Industry

There are more than 200,000 stakeholders in the industry with an estimated value of P500M.

HAVE A WORMY DAY!

