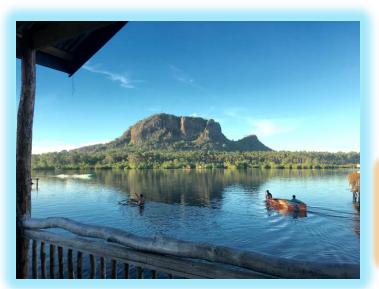


FINDING A WAY OUT FOR DEPLETED SMALL-SCALE FISHERIES (SSF) IN THE PHILIPPINES

Richard N. Muallil, Ph.D., OYS 2016

Professor/Director for Research


²Mindanao State University – Tawi-Tawi College of Technology and Oceanography, 7500 Bongao, Tawi-Tawi, Philippines

Venue: Bacolod Business Inn, Bacolod City, Philippines Date: September 20, 2016

7awi-7awi is <3..

Photos by Basil Sali and Rosendo Reyes

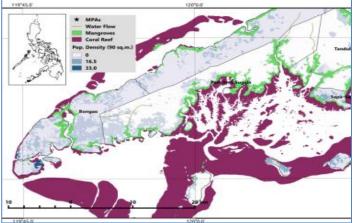
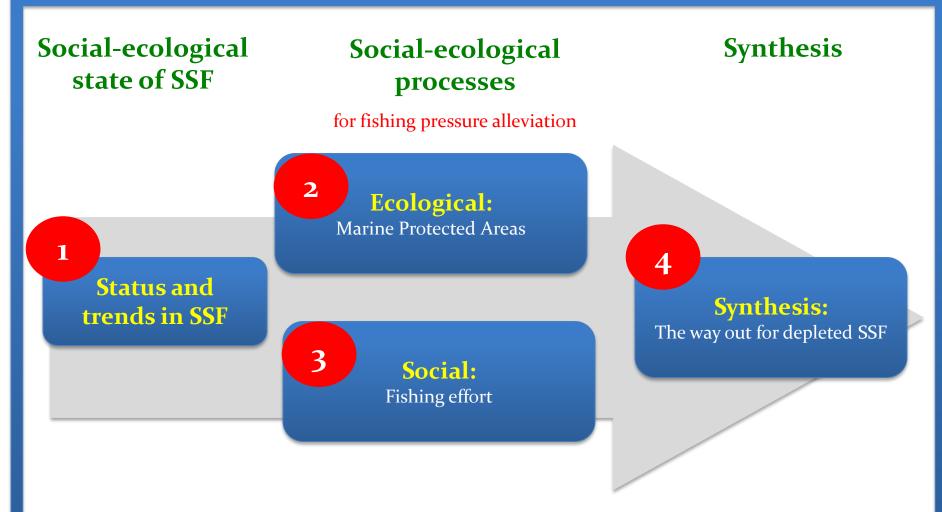
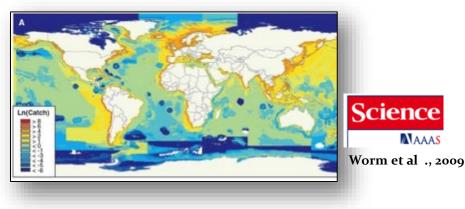


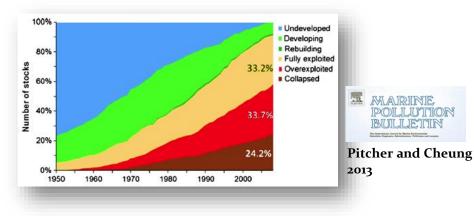
Fig. 1. Map of Tawi-Tawi showing its vast coral reefs.



Source: modified from ECOFISH Tawi-Tawi

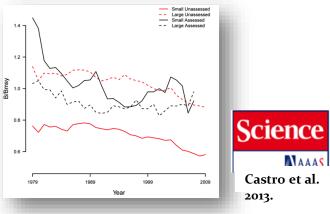
Outline


Muallil 2015. On the sustainability of small-scale fisheries in the Philippines. PhD Dissertation.

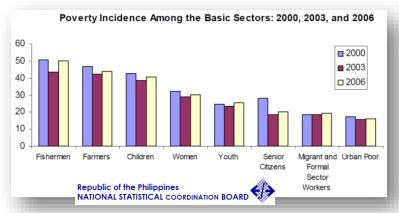

Status of the world fisheries

At least 63% of the global fisheries are overfished

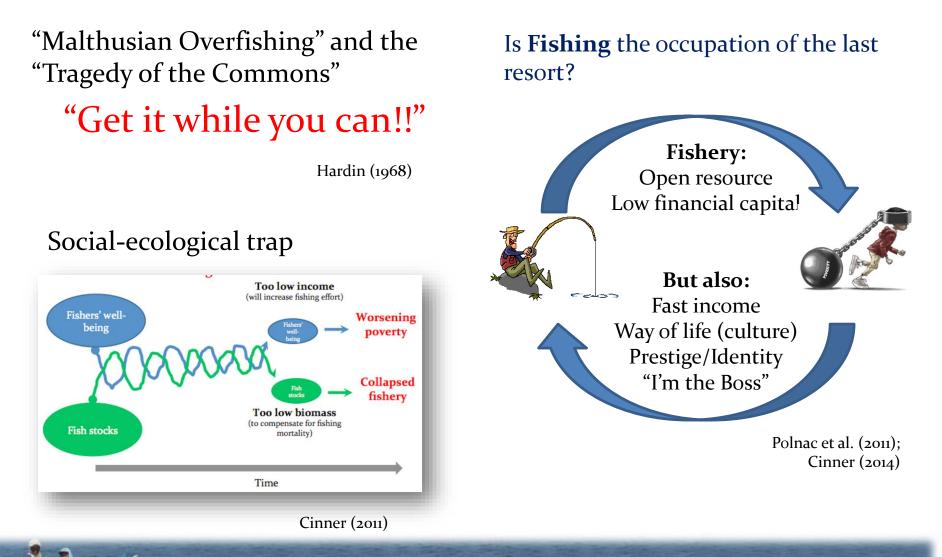
(i.e. Biomass is below B_{MSY} or <0.5 of "unfished" levels)!



Drastic decline since the 1950s



Conditions are much worse in unassessed small fisheries


(which comprise >80% of the global catch)

Fishers are the poorest of the poor!

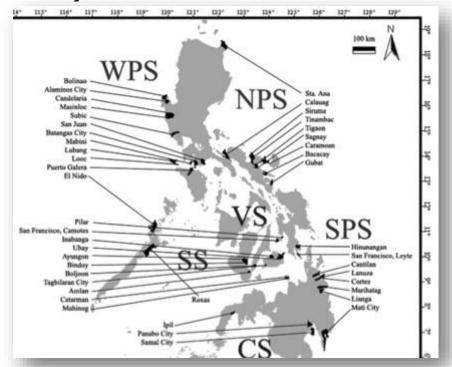
Fishery and poverty

Study 1: Status and trends in Philippine SSF

Main objectives:

- ✤ To project SSF sustainability based on social-ecological attributes of the fishing communities.
- ✤ To estimate fishing capacity or the size of MPAs needed for long-term sustainability of SSF.
- ✤ To characterize catch trends in SSF over the last few decades.

The Philippines is geographically situated at the heart of the Coral Triangle, the center of the world's marine biodiversity [1]. but is facing enormous threats particularly from human abuses [2


Fishes are the last wild vertebrates being hunted in large

numbers for food. Unlike other vertebrate groups, fish are much more prolific. So much so, scientists in the early 19th centur

Study 1a. Status, trends and challenges in Philippine small-scale fisheries.

Study sites:

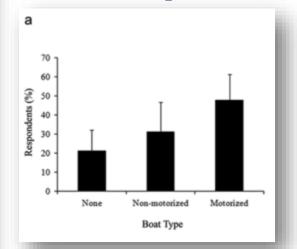
Data collection

No. of municipalities	44
No. of provinces	21
No. fishers/town	6,488
interviewed (total)	
Interview period	2009 to 2013

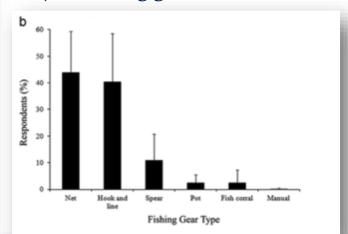
One-on-one interview

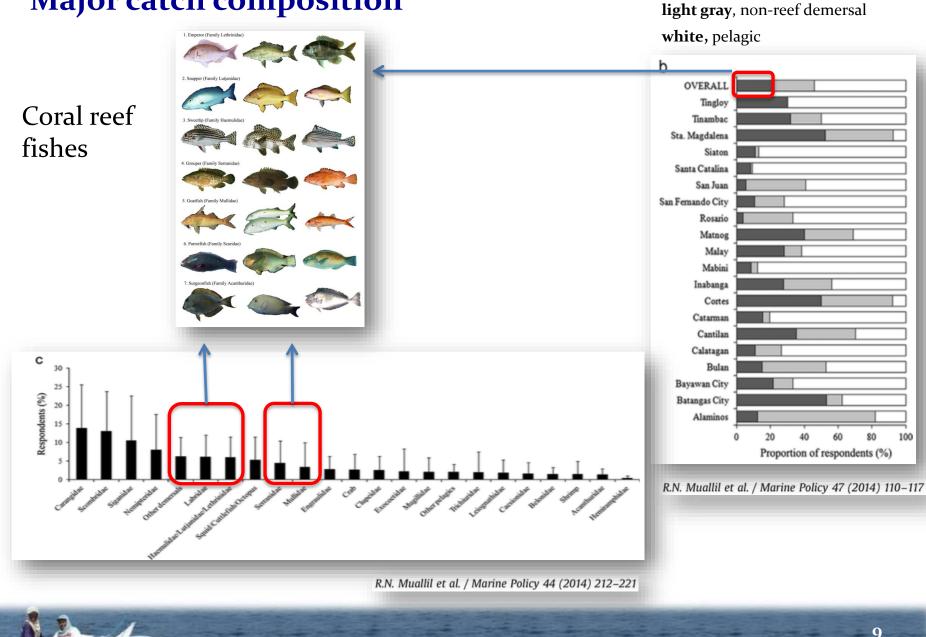
Focus group discussion

Social-ecological characteristics of SSF in the Philippines:


Table 1

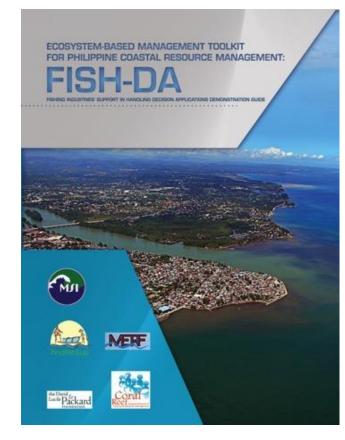
Fisheries parameters used as inputs to FISHDA model.


BioGeoRegion	Town	Respondents	Municipal waters (km²)	MPA (km²)	MPA (% of municipal waters)	Number of fishers	% of demersal species in catch composition	Catch rate (kg/day/ fisher) (mean ± SD)		'Fish price (US S per kg)
	Ipil	195	159	0.8	0.5	1600	53.0	17.0	275	2.0
CS	Panabo City	59	36	0.5	1.4	191	85.0	3.5	267	1.9
	Samal City	94	1037	53.8	5.2	4015	65.2	4.6	270	1.9
NPS	Bacacay	159	223	4.5	2.0	1850	72.0	4.2	207	1.8
	Calauag	243	581	0.1	0.0	2924	72.0	3.3	264	2.7
	Caramoan	139	882	1.0	0.1	5000	75.0	3.8	244	1.7
	Gubat	195	451	2.4	0.5	1200	85.5	2.9	260	2.3
	Sagnay	225	170	1.4	0.8	220	17.0	4.4	278	2.0
	Siruma	182	1014	19.9	2.0	1330	66.0	5.5	270	1.4
	Sta. Ana	202	1494	1.0	0.1	2745	32.0	15.0	204	1.9
	Tigaon	70	32	0.6	1.9	72	29.0	3.3	254	1.9
	Tinambac	89	199	1.0	0.5	2252	45.4	5.7	167	1.8
SPS	Cantilan	132	252	0.6	0.2	6348	63.8	6.1	208	1.8
9F 3	Contes	80	252 287	1.1	0.2	6348	03.8 83.3	3.0	208	2.0
	Hinunangan		181	1.2	0.7	582	69.3	2.0	152	2.0
	_			0.6		720	43.3	2.5	165	
	Lanuza	141	148		0.4					2.2
	Lianga	129	238	0.9	0.4	680	54.0	13.0	206	2.1
	Marihatag	118	147	1.5	1.0	462	70.0	3.2	188	2.0
	Mati City	219	1222	5.8	0.5	2000	57.4	10.2	251	2.2
ŝS	Roxas	203	1260	85.7	6.8	2000	71.0	8.3	255	4.8
/S	Amlan	175	43	0.1	0.2	536	13.9	3.7	247	2.2
	Ayungon	198	114	1.0	0.9	1650	45.0	7.0	256	2.2
	Bindoy	144	81	1.1	1.4	931	28.0	3.3	261	2.0
	Boljoon	176	109	0.2	0.2	750	31.8	3.3	226	2.0
	Catarman	87	276	0.9	0.3	1200	19.0	8.2	186	1.9
	Inabanga	179	163	0.1	0.1	5000	67.1	2.2	274	2.2
	Mahinog	47	154	0.3	0.2	1000	60.0	3.6	171	2.6
	Pilar	175	301	2.5	0.8	1242	48.0	2.7	239	2.0
	San Fran, Camotes	180	899	0.4	0.0	3205	37.9	4.9	237	1.6
	San Fran, S. Leyte	137	116	0.1	0.1	425	46.7	2.0	143	1.8
	Tagbilaran City	167	51	0.1	0.2	6000	43.1	4.6	247	2.5
	Ubay	167	232	1.5	0.6	1495	80.0	3.1	236	2.0
NPS	Alaminos City	91	199	16.6	8.3	1979	90.8	2.4	240	1.4
	Batangas City	100	354	0.1	0.0	1121	44.7	2.5	199	1.7
	Bolinao	105	863	1.1	0.1	4202	91.3	3.7	227	1.3
	Candelaria	116	212	2.5	0.0	1000	44.0	3.7	192	2.1
	El Nido	115	1612	543.0	33.7	3000	66.7	6.4	245	1.1
	Looc	133	1487	70.0	4.7	888	82.5	5.1	241	1.8
	Lubang	103	1143	70.0	6.1	834	30.7	6.8	240	1.2
	Mabini	107	196	3.4	1.7	772	30.0	5.1	221	1.9
	Masinloc P. Galera	77	209 118	77.7	37.2	1320 333	27.1 35.6	16.5	166 168	1.5
erage				230 3		,850			(2.0


* Conversion rate used was US \$1-PhP 45.

Boat ownership

Major fishing gear



Major catch composition

9

dark gray, reef associated demersal

Analyses

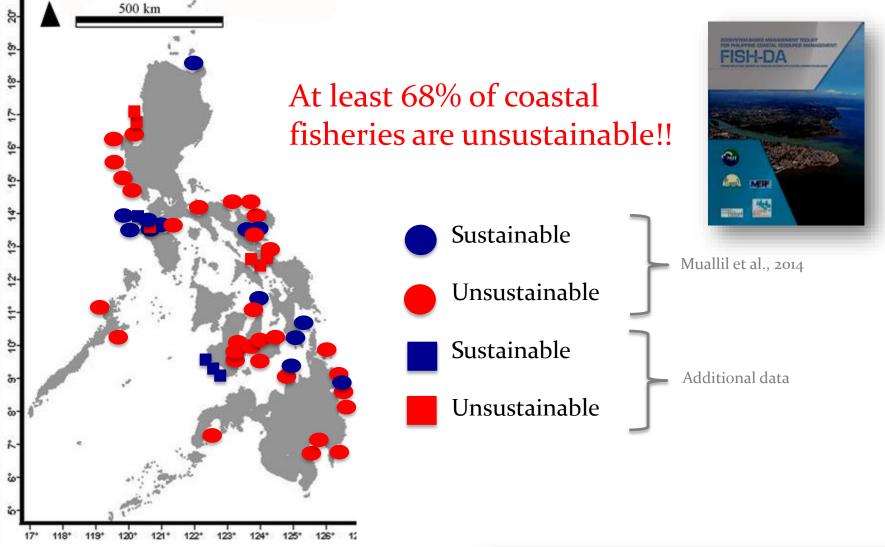
FISH-DA

Fishing Industries' Support in Handling Decision Applications -Licuanan et al., 2007

Features:

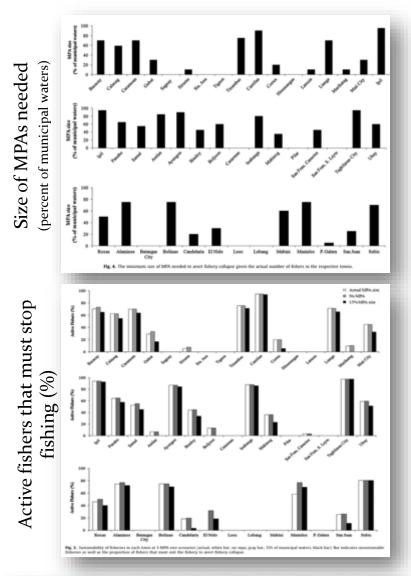
*Communications and decision support tool for illustrating trade-offs

Coarse approximation


Uses simple equations to get estimates of fisheries "carrying capacities"

Fewer data requirements compared to other tools

Free version of FISH-BE (Fisheries Information for Sustainable Harvests and Bio-Economic model (Licuanan et al. 2007)



Status of SSF in the Philippines

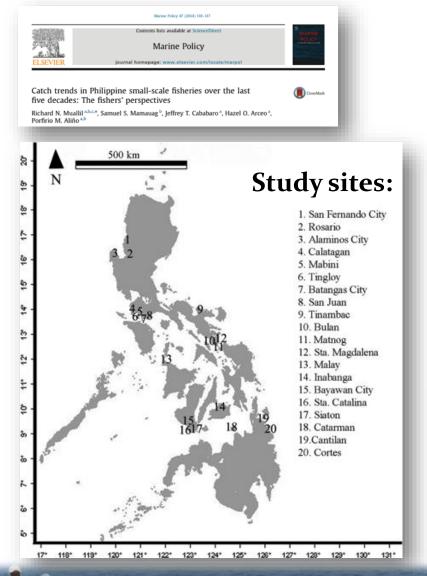
R.N. Muallil et al. / Marine Policy 44 (2014) 212-221

To achieve sustainable fisheries:

Establish very large MPAs i.e. at least 58% of the municipal

i.e. at least 58% of the municipal waters must be protected!!

(current MPAs in the Philippines cover only about 3% of municipal waters)



Reduce considerable fishing effort

i.e. at least 53% of active fishers must stop fishing

- Actual MPA size
 - No MPA
- 15% MPA size

Study 1b. Catch trends in Philippine small-scale fisheries over the last five decades

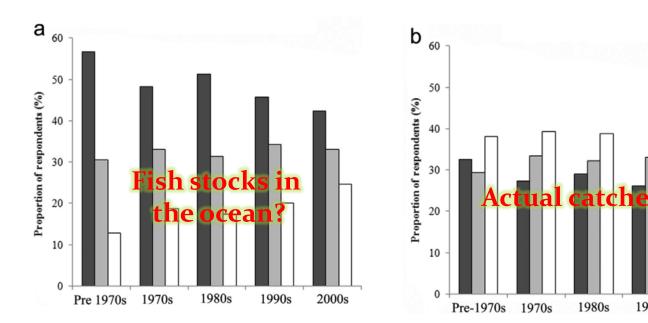
Data collection

No. of municipalities	20
No. of provinces	10
No. fishers/town	3,446
interviewed (total)	
Interview period	Feb to Oct 2013

One-on-one interview

Focus group discussion

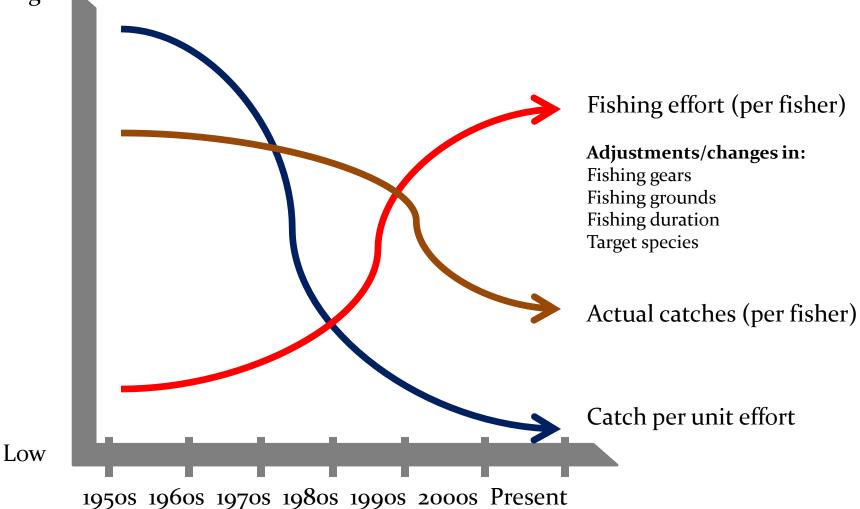
Main questions asked:

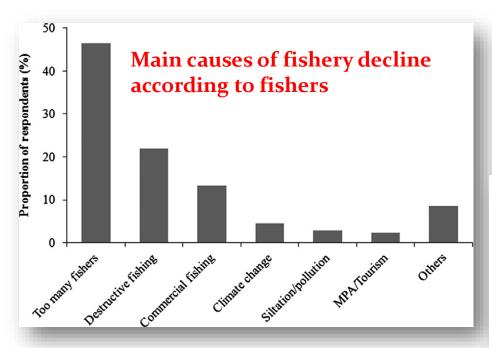

1. How are current catches compared to *past catches (i.e. 1st year in the fishery)?

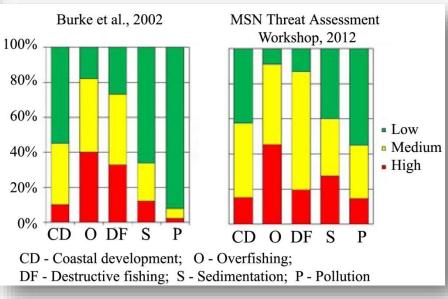
Qualitative estimate

- 2. Current catches (in kg/trip) versus *past catches (in kg/trip)
- ✤ Quantitative estimate

1990s


2000s

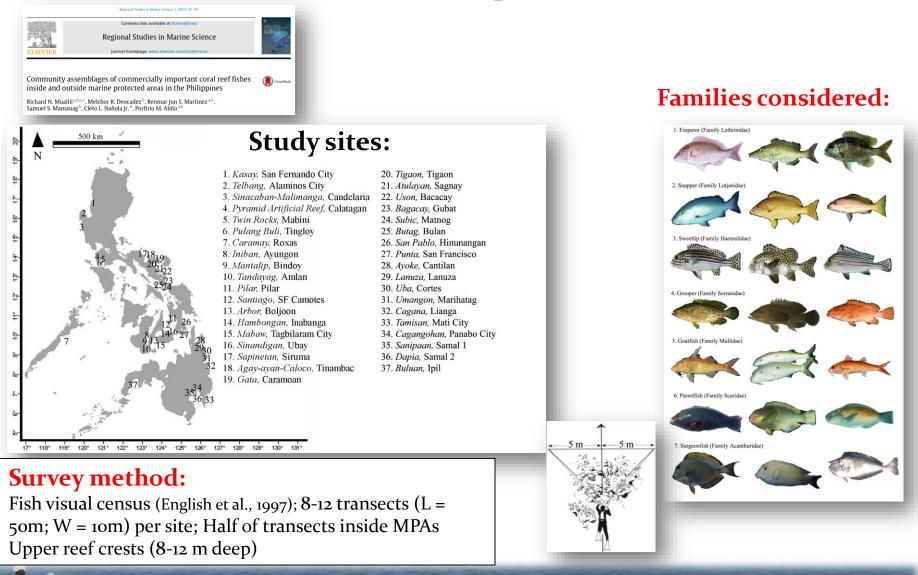

<50% of previous state</p>
Lower
Same or higher


Summary: catch trends over the last 5 decades.

Major threats in Philippine SSF: overfishing and destructive/illegal fishing

Modified from: Philippine State of the Coral Triangle Report, 2012

Study 2: Fishing pressure alleviation: Ecological


Main objectives:

- To describe the community assemblages of commercially important coral reef fishes inside and outside MPAs.
- To determine the socialecological factors that affect MPA effectiveness for conservation of commecially important coral reef fishes.

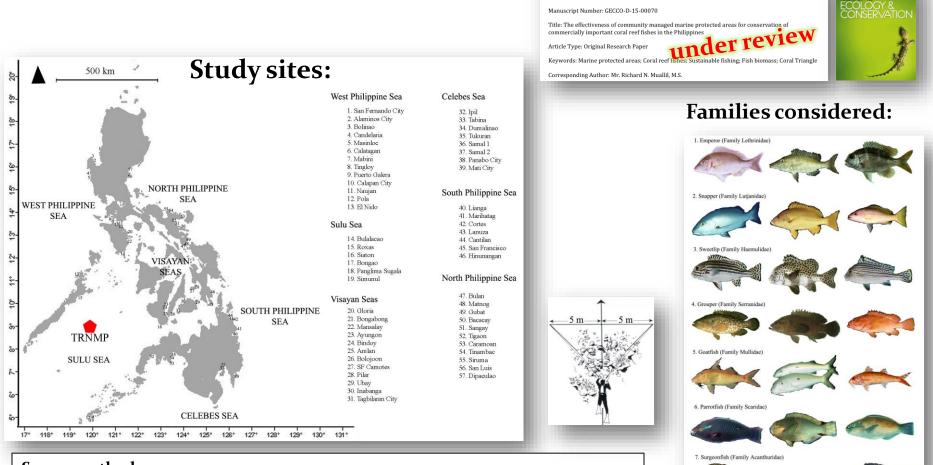
and age of MFAs the follow significant relationsing with initial nonlass. For recis outside mAs, hat biomass was highest in the Sulus Sea and lowest in the Visayan Seas biogeographic region. Fish biomass was significantly higher on island reefs. Overall, this study shows the poor conditions of commercially important coral reef fishes, which is indicative of high fishing pressure. Recommendations to improve the effectiveness of MPAs and other initiatives that would alleviate fishing pressure on coral reefs are discussed.

Study 2a. Community assemblages of commercially important coral reef fishes inside and outside marine protected areas.

Results: More, larger and more diverse fish communities inside MPAs.

Number of species recorded: 114

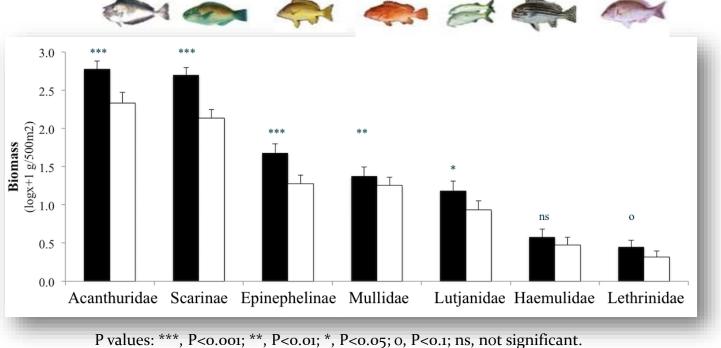
Acanthuridae, 33; Scarinae, 27; Lutjanidae, 17; Epinephelinae, 16; Mullidae, 9; Haemulidae, 6; Lethrinidae, 6.


Statistics: Shannon-Wiener index of diversity (to compare fish diversity) Paired T-test (to compare overall fish diversity indices)

P values: ***, P<0.001; **, P<0.01; *, P<0.05; 0, P<0.1; ns, not significant.

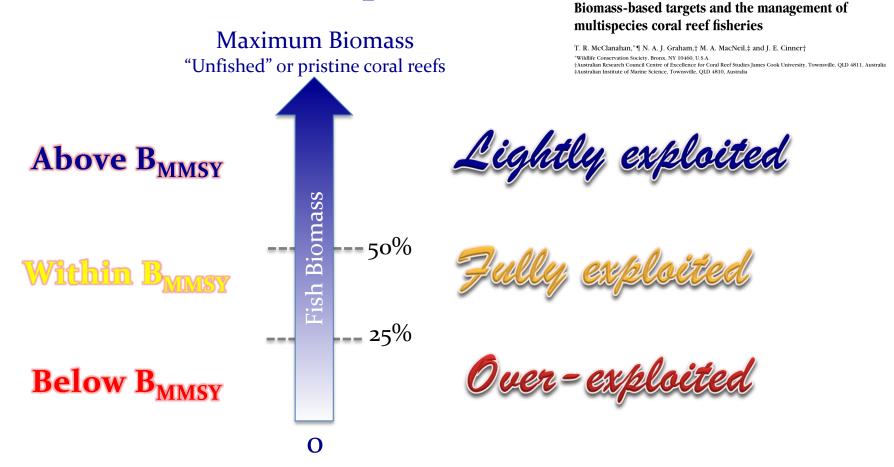
Study 2b. Factors affecting MPA effectiveness for conservation of commercially important coral reef fishes.

Elsevier Editorial System(tm) for Global Ecology and Conservation


Manuscript Draft

Survey method:

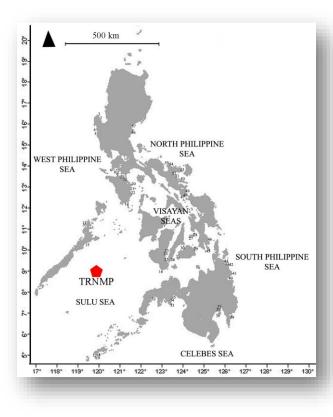
Fish visual census (English et al., 1997); 4-12 transects (L = 50m; W = 10m) per site; Half of transects inside MPAs; Upper reef crests (8-12 m deep)


Results: Significantly higher fish biomass inside MPAs

Muallil 2015. PhD Dissertation

Contributed Paper

Methods: Levels of exploitation



B_{MMSY} – Biomass at maximum sustainable yield for multispecies coral reef fisheries.

Tubbataha Reef National Marine Park (TRNMP):

The most pristine/most enforced MPA in the Philippines.

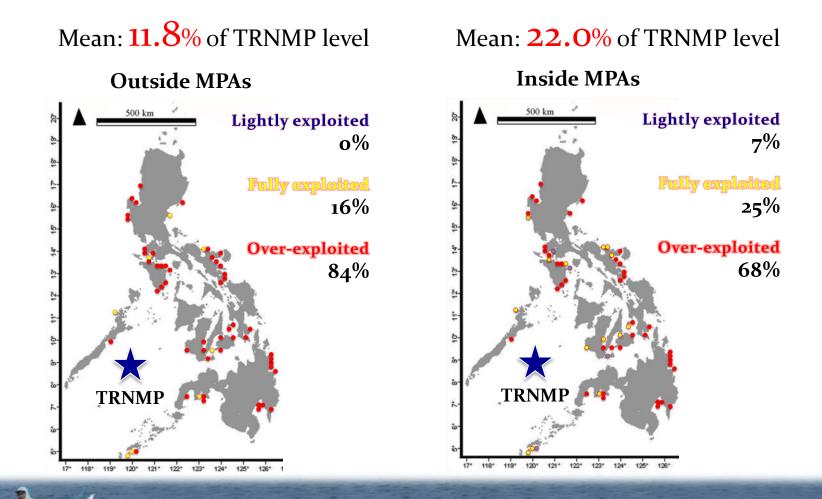
TRNMP profile:

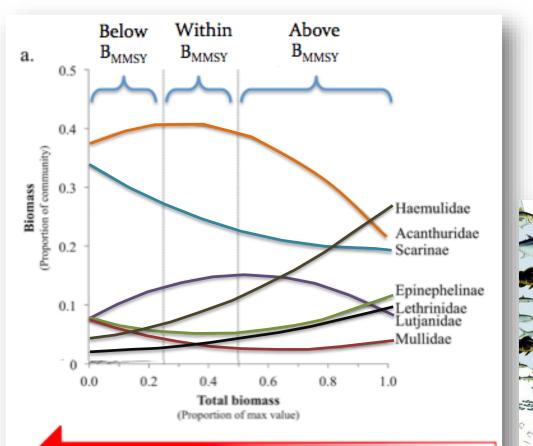
Nationally managed (NIPAS) Established: 1988

Total size: 33,200 ha

Location: Sulu Sea, far from human settlements. No fishing activity!

Fish biomass (commercially important species only): 51.1 mt/km²





Fish biomass inside and outside locally managed MPAs in the Philippines

 $\bigstar \text{TNRMP} = 51.1 \text{ mt/km}^2$

Evidence of "fishing down the food webs" in Philippine coral reef fisheries Pauly and Watson, 2003

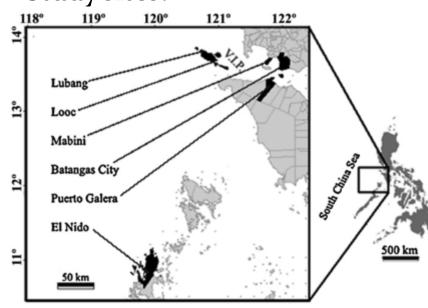
Increasing Fishing Pressure

Lower trophic **Acanthuridae** and **Scarinae** dominate the reefs in the Philippines and their proportion (including **Mullidae**) increases as total fish biomass decreases.

"Overfishing has slashed stocks especially of large predator species to an all-time low worldwide... If we don't manage this resource, we will be left with a diet of jellyfish and plankton stew" Pauly & Watson (2003) We watson (2003) Branch, T. Powerpoint presentation (o8 Nov 2011)

Study 3: Fishing pressure alleviation: Social

Main objectives:


- To demonstrate how incentives or low catches can motivate fishers to exit the fishery.
- To demonstrate how different socioeconomic factors affect fishers' behavior in terms of their attachment to the fishery or fishing effort exerted.

In an archipelagic tropical country like the Philippines, fishing is a significant source of livelihood as well as an important way of life for the majority of the coastal population (Polinac et al., 2001). Fishing used to be a very lucrative livelihood but due to its "openaccess" nature, uncontrolled fish extraction by the burgeoning population resulted in a drastic decline of stocks in many fishing Hamilton, 2003). Worm et al. (2009) estimated that 63% of the world's occans are already overfished. A similar 64% of Philippine coastal fisheries are also overfished, although this is a conservative estimate since the impacts of destructive fishing practices, such as blast and poison fishing, and the intrusion of the highly efficient commercial fishers to coastal fishing grounds were not accounted for in the study (Muallit et al., 2012). Creen et al. (2003) estimated that fish stocks in major fishing grounds in the Philippines have

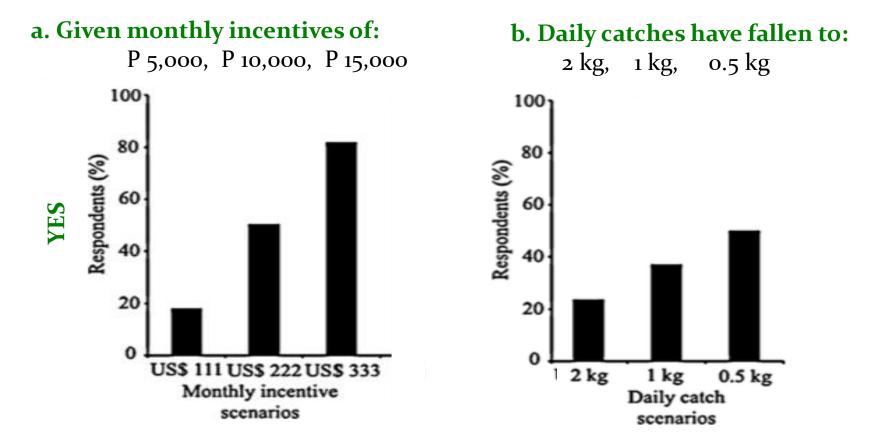
Study 3a. Willingness to exit the fishery as a responses to declining catch or increasing monetary scenarios.

Fig. 1. The geographic location of the six study sites and the Verde Island Passage. (V.LP.)

Data collection

No. of municipalities	6
No. of provinces	3
No. fishers interviewed (total)	662
Interview period	Apr 2009 to Jan
	2010

One-on-one interview


Focus group discussion

Main questions asked:

Would you completely stop fishing if:

Results: Factors affecting fishers' decisions:

Increasing monetary incentives

Monetary incentive scenario	Predictor	Coefficient	S.E.	Wald's X ²	Odds ratio	P
US\$111	Constant	-1.463	0.454	10.398	NA	0.001
	Fishing days 2	-0.142	0.323	0.193	0.868	0.661
	Fishing days 3	-0.909	0.364	6,221	0.403	0.013
	Diagnostic tests					
	Hosmer-Lemeshow	$\chi^2 = 1.329$	df=8	P=0.995		
	AUC*	0.768				
U\$\$222	Constant	0.429	0.286	2.255	NA	0.133
	Education 2	-0.526	0.215	5.952	0.591	0.015
	Years in the fishery 2	-0.381	0.244	2.443	0.683	0.118
	Years in the fishery 3	-0.482	0.241	4.000	0.617	0.046
	Diagnostic tests					
	Hosmer-Lemeshow	$X^2 = 11.446$	df=8	P = 0.178		
	AUC*	0.676				
US\$333	Constant	2.176	0.297	53.633	NA	0.000
	Years in the fishery 2	-0.965	0.333	8.398	0.381	0.004
	Years in the fishery 3	-0.919	0.327	7.907	0.399	0.005
	Diagnostic tests					
	Hosmer-Lemeshow	$X^2 = 4.791$	df=8	P=0.780		
	AUC*	0.652				

Declining catches

Catch scenario	Predictor	Coefficient	S.E.	Wald's X ²	Odds ratio	Р
0.5 kg	Constant	0.621	0.263	5.597	NA	0.018
	Fishing days 2	-0.031	0.247	0.016	0.969	0.900
	Fishing days 3	-0.604	0.254	5.659	0.547	0.017
	Years in the fishery 2	-0.354	0.244	2.116	0.702	0.146
	Years in the fishery 3	-0.880	0.239	13.523	0.415	0.000
	Diagnostic tests	-				
	Hosmer-Lemeshow	$X^2 = 4.945$	df = 8	P=0.763		
	AUC*	0.670				
1 kg	Constant	-0.277	0.348	0.631	NA	0.427
	Age 2	0.464	0.251	3.420	1.591	0.064
	Age 3	0.013	0.348	0.001	1.013	0.970
	Fishing days 2	0.358	0.265	1.832	1.431	0.176
	Fishing days 3	-0.274	0.278	0.969	0.760	0.325
	Years in the fishery 2	-0.487	0.253	3.721	0.614	0.054
	Years in the fishery 3	-1.252	0.289	18.833	0.286	0.000
	Diagnostic tests					
	Hosmer–Lemeshow	$\chi^2 = 9.224$	df=8	P=0.3237		
	AUC*	0.720				
2 kg	Constant	-0.727	0.364	4.002	NA	0.045
5	Fishing days 2	0.292	0.298	0.967	1.340	0.326
	Fishing days 3	-0.426	0.323	1.741	0.653	0.187
	Years in the fishery 2	-0.707	0.285	6.162	0.493	0.013
	Years in the fishery 3	-1.135	0.300	14.364	0.321	0.000
	Diagnostic tests					
	Hosmer–Lemeshow	$\chi^2 = 10.054$	df=8	P=0.261		
	AUC*	0.757				

* Area under the receiver operating characteristics curve.

Significant at P=0.01.

" Significant at P=0.05.

Significant at P=0.1.

A dest

Fishers who are unwilling to exit the fishery:

- 1. longer in the fishery
- 2. fish more often

"Fishing has become an important way of life"

Synthesis:

Fish Biomass

B_{MMSY}

Carrying capacity

JnSustain

Fish stocks

Fishing

a. Ecological (MPAs)

More and larger MPAs all over the country
Protect entire uninhabited reefs (i.e. entire island/shoals).

Protect healthier and ecologically important reefs (i.e. larval sources and sinks).
Establish MPA networks (ecological and social).

Strict enforcement of MPAs.

Considerations:

Behavior of fishers
Poverty and lack of alternative options.
Too many fishers potentially displaced.
Limited funds and poor (environmental) governance.

b. Social(Fishing effort)

Economic assistance, capacity building and IECs

Put conditionality (i.e. Conditional Cash Transfers or CCT) such as to reduce fishing effort, exit the fishery and participate in coastal resource management activities.
Target those more willing to exit the fishery or exerting high fishing effort.

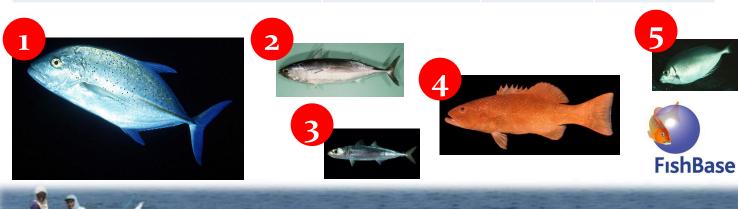
✤Prioritize CCT and IEC in areas with lack of alternative options. Capacity building programs in areas with more alternative options.

*****Reduce fishing effort on vulnerable species (i.e. coral reef fishes).

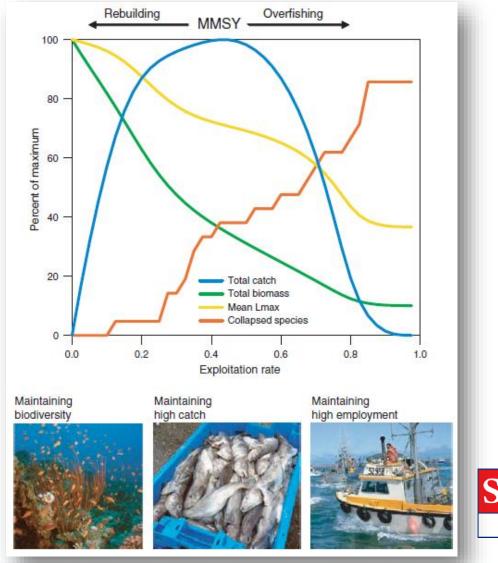
Gear regulation, buy-out gears that catches large volume coral reef fishes (bottomset long lines, bottomset gillnets) especially from those fishing near MPAs.
Replace gears with those catching pelagic and other non-coral reef associated fishes. Provision of fishing technology, i.e. boats, may also be considered.

Eradicate destructive/illegal fishing activities

1



Potential for sustainable SSF: **The ocean is huge and fish are very prolific!**


America Europe
Los you
South Africa
America
Asia
- AN
Antarcrtica

Species	Max Length	No. of Eggs		
		Min	Max	
1. Caranx melampigus	117 cm FL	49,700	4,270,000	
2. Auxis thazard thazard	65 cm FL	200,000	1,370,000	
3. Decapterus macrosoma	35 cm	68,000	106,000	
4. Plectropomus leopardus	120 CM	457,900	?	
5. Siganus canaliculatus	30 cm	42,253	1,000,000	

http://legacy.mos.org/oceans/planet/

Management options and objectives:

Rebuilding Global Fisheries Boris Worm, *et al. Science* **325**, 578 (2009); DOI: 10.1126/science.1173146

FGD with fishers at Cabra island, Lubang, Occidental Mindoro April 24, 2015

FISH-BE WITH YOU!!

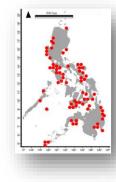
Acknowledgement

Super Perry & the COMECO lab

(Coral Reefs and Community Ecology)

Marine Environment and Resources Foundation

Mindanao State University – Tawi-Tawi College of Technology and Oceanography


Dissertation committee:

Porfirio M. Aliño, Ph.D. Hazel O. Arceo, Ph.D. Wilfredo L. Campos, Ph.D. Cesar L. Villanoy, Ph.D. Aletta T. Yñiguez, Ph.D.

My fishy buddies:

To the wonderful people we met/worked with during the surveys all over the country. Special thanks (and best wishes) to the fishers!!

Family, Friends & God Almighty

Doc Sam Boss, Uncle, Friend, Kuya, Father and Lolo

