

Department of Science and Technology (DOST)

Impacts of land use change and an integrated assessment of vulnerability to flooding: The case of Sta. Rosa-Silang subwatershed

Damasa B. Magcale-Macandog

Institute of Biological Sciences, University of the Philippines Los Baños, College, Laguna, Philippines Paper presented during the NAST ASM 2018 on July 12, 2018 at Manila Hotel, Metro Manila

CONTENT

Introduction

- Study Site and Land Cover Change
- Flooding in Study Site
- Objectives

Methodology

- Flood modelling (SWAT, HEC-HMS and HEC-RAS)
- Vulnerability Assessment Survey
- Participatory Watershed Land-use Management

Results

Recommendations

INTRODUCTION

Silang-Santa Rosa Subwatershed, Philippines

Area shaded in red (above), topography (right)

- Multiple cities in 120 km²
- Rapid economic growth
- Population growth and migration (570,000 people)
- Massive land use changes
 in past 2 decades
- Flooding, environmental degradation, pollution, waste

LAND COVER CHANGES

Rapid conversion of vegetated areas to built-up land

- Impervious area of subwatershed increased by 54% (from 3,239 ha. to 4,988 ha.).
- Vegetated area decreased by 21% (from 8,509 ha. to 6,760 ha).
- Upstream: Impervious area increased by 102% in upstream municipality of Silang, and also increased in upstream parts of Biñan and Santa Rosa City, causing higher runoff (more frequent and intense floods downstream).
- Downstream: The most floodprone areas in the watershed underwent some of the most development.

Land Conversion in the Downstream Area

Year **2007 & 2014** Orthophotos in the downstream barangays of Sta. Rosa experiencing Land conversion from **Rice fields** to **Subdivisions**

Weather-related disasters: Flooding

Santa Rosa Philippines Sep. 2006 with Typhoon Milenyo

OBJECTIVES

I. Hydrologic Modeling

The study generally aimed **to**:

• Assess the landslide and flooding high risk areas along the Santa Rosa-Silang Subwatershed using the SWAT, HEC-HMS and HEC-RAS hydrological models.

Specifically, it intended to:

- a) Predict runoff and sediment yield in the site using SWAT model from the spatial and climatic inputs
- **b) Identify high risk areas** along the site vulnerable to landslides and flooding

VULNERABILITY

- A function of the EXPOSURE (who or what is at risk) and the SENSITIVITY OF THE SYSTEM (the degree to which people and places can be harmed)
- Vulnerability arises from the intersection of human systems, the built environment, and the natural environment
- The conditions determined by physical, social, economic and environmental factors or processes, which increase the susceptibility of a community to the impact of hazards (UN/ISDR, Geneva 2004)
- Extent to which climate change may damage or harm a system. It depends on system's sensitivity and ability to adapt to new climatic conditions

OBJECTIVES

II. Vulnerability assessment

The study generally aimed to:

• Survey 3 coastal communities (Sinalhan, Aplala, Caingin) with respect to their exposure, sensitivity, impacts and capability to adapt to floods.

Specifically, it intended to:

- a) Determine the reasons why the three barangays are vulnerable to flood;
- b) Determine the experiences, observations, and coping mechanisms of the residents in the three barangays during floods and extreme weather conditions;
- c) Find out views of the residents of the three barangays on government intervention and implementation of policies during floods and extreme weather conditions;
- d) Assess the vulnerability of these communities to flooding using the data gathered; and
- e) Recommend appropriate adaptation and mitigation strategies to residents and local government officials of Santa Rosa City.

METHODOLOGY

I. Hydrologic Modeling

Soil and Water Assessment Tool

A physically-based, river basin-scale, continuous event model developed to quantify the water, sediment, and agricultural nutrient yields of large watersheds.

The model bears its simulations on the area's soil types, slope, and land management conditions.

SWAT can quantify:

- ✓ potential flood volume
- ✓ potential erosion and sediment accumulation

ArcSWAT					×
SWAT Project Setup 👻	Watershed Delineator \bullet	HRU Analysis 🔻	Write Input Tables 👻	Edit SWAT Input 👻	SWAT Simulation 👻

METHODOLOGY

Preparation of SWAT Model Inputs:

- Geographical data of the Santa Rosa-Silang Subwatershed
 - a) Digital terrain model (DTM)
 - b) 2014 land use map
 - c) Soil map
- Historical climatic data from 1980 to 2015
 - a) Daily rainfall
 - b) Daily maximum and minimum temperatures

≻The 36-year (1980 to 2015) climatic data was converted and compiled to a particular format (.txt) required by the SWAT model.

METHODOLOGY

Development of SWAT Model:

- The DTM map was entered in the model's platform.
- Streams and outlets were created based on the changes in elevation along the area.

FLOOD MODELLING

Hydrologic Engineering Center – Hydrologic Modeling System

HEC-RAS

Hydrologic Engineering Center – River Analysis System

Collection of precipitation and discharge data from DOST-Project

Generation of Basin Model using ArcGIS10 with HEC-GeoHMS and HEC-GeoRAS extensions

HEC-HMS

METHODOLOGY II. Vulnerability Assessment

HOUSEHOLD SURVEY

- Purposive Sampling Method
- 50 households per barangay (150 overall)

KEY INFORMANT SURVEY

- City official based on expertise
 - ✓ CPDO
 - ✓ Local Building Office
 - ✓ City Veterinarian Office
 - ✓ CDRRMO
- One official in each barangay

DATA ANALYSIS

- Descriptive Statistics
- Two-way ANOVA without replication
- Socio-economic vulnerability scoring matrix and classification

III. Participatory Watershed Land-use Management

Simulated surface flow and sediment yield volumes of the dominant 49 HRUs.

HRU #	Flow (cms)	Sediment (tons)	HRU #	Flow (cms)	Sediment (tons)
1	0.7158	135827.48	26	15.4708	7254.95
2	0.7917	156458.84	27	0.6312	5373.93
3	1.4540	306038. <mark>9</mark> 3	28	2.8183	21510.92
4	2.2454	462669.1 4	29	1.3804	8717.31
5	1.1697	11936.78	30	0.8273	4499.94
6	1.2591	260517.12	31	1.3195	13773.01
7	0 8869	67671.98	32	12.6095	275702.37
8	20 1060	69203.81	33	2.0898	812253.07
9	3.6181	39202.20	34	0.9560	3622.33
10	2.1672	331528.82	35	9.0903	18126.48
11	0.0015	133.20	36	2.1310	29016.74
12	-3.5459	225821.76	37	0.6794	304539.79
13	24.5071	119784.40	38	4.0297	32729.82
14	2.2703	213405.49	39	1.2247	341).03
15	18.1310	31770.96	40	0.9388	423946.48
16	0.7298	7577.32	41	1.4265	209 08.88
17	1.3643	174439.18	42	3.9457	478249.34
18	1.2397	9327.67	43	0.8058	562 3.19
19	1.2392	220181.69	44	2.2595	448262.72
20	0.6391	12474.23	45	5.0766	26058.86
21	16.7404	178221.34	46	0.8655	10281.51
22	14.0753	36637.67	47	2.3273	382872.65
23	11.9047	10481.01	48	1.1236	225854 33
24	5.7938	44970.18	49	0.8055	152628.49
25	h 1448	4h/h/h		0.0000	101010110

Results from SWAT Modeling

Results from SWAT Modeling

HRU #8, #13, #15, #21, #22, and #26 are those vulnerable to flashfloods based on their physical characteristic & exposure to extreme rainfall.

> Identified areas vulnerable to flooding along the Santa Rosa-Silang Subwatershed

Results from SWAT Modeling

HRU #8, #13, #15, #21, #22, and #26 are those vulnerable to flashfloods based on their physical characteristics & exposure to extreme rainfall.

> Identified areas vulnerable to flooding along the Santa Rosa-Silang Subwatershed

 \succ The flooded areas are dominated by residential areas, subdivisions and built up areas which render the permeability of the land and soils to be extremely low.

HRU Nos. 3, 4, and 19 – vulnerable to sedimentation

HRU Nos. 33, 37, 40, 42, 44, and 47 are vulnerable to erosion.

The portions vulnerable to erosion are mostly in sloping upstream areas in Silang and midstream areas in Santa Rosa.

The downstream areas along the riverine system and lakeshore are most vulnerable to sedimentation

Participatory GIS Revealing future development & land-use

Expected change in land-use

Current Land Use (2014)

Future Land Use Plan (2025)*

*Future land use plan map based on the results of a participatory land use mapping session with representatives from four local government units (LGUs)

Scenario Simulation: Current Scenario

Laguna Lake

Scenario Simulation: Future Scenario

Subwatershed boundary

Future Land Use Plan (2025)*

*Future land use plan map based on the results of a participatory land use mapping session with representatives from four local government units (LGUs)

Current VS Future

	AREA	%
	(Hectares)	increase
Current 2014	969.83	
Future 2025	1,180.12	21.68
Difference	210.29	

Scenario & risk analysis

Silang-Santa Rosa Subwatershed, Philippines Area shaded in red (a), topography (b)

Study site

Future BAU scenario (2025) Simulation using 10 min. time step

Current vs Future

Rainfall: Typhoon Ofel (Int. Name: Son-Tinh) Oct. 25, 2012 Duration: 12 hours Amount: 224.4 mm Intensity: 18.67 mm/hr Collected using Tipping Bucket Rain Gauge installed in Silang, Cavite (Upstream)

10 year Rain Return Period Based on Ambulong

Station *RIDF* (*Rainfall Intensity-Duration Frequency Curve*) which has a 54 years record. Prepared by Hydrometeorological Data Application Section (HMDAS).

1,180.12

210.29

21.68

Future 2025

Difference

Climate change measures

1. Zoning enhancement To avoid and alleviate climate impact, and to sequestrate carbon dioxide	2. River rehabilitation To increase water retaining capacity
 Enforce development controls in areas highly susceptible to flooding. Strengthen building codes in high-risk areas (e.g. floodwalls, elevated flooring). Devise a relocation plan for informal settlers residing in flood-prone areas. Mandate runoff mitigation measures (e.g. tree planting, water-permeable paving) where development/land-conversion is made. Improve enforcement of zoning ordinances. Harmonize land-use among local governments to manage the river basin as a whole. 	 All areas Regular river cleanup Upstream area Protection and improvement through replanting of endemic and indigenous plant species Midstream area Rehabilitation of easement and riverbanks Construction of slope protection along riverbanks Downstream area Dredging of sediments Solid and liquid waste management Planting of endemic and indigenous plant species Improvement of drainage

3. Capacity development

To build and strengthen the ability of local government to design and implement climate actions

- Needs assessments on climate change adaptation and mitigation and disaster preparedness and management
- Development of campaign materials and training modules
- Conduct of trainings and events to increase awareness and preparedness

Sta. Rosa Watershed Management Council (SWMC)

- Established in 2014 for the first time in the Lake Laguna basin
- Aims to harmonize land-use and make collective efforts to address weather-related disasters at the watershed level
- Consists of LLDA, LGUs as well as representatives from NGOs and the private sector
- Will create/implement the integrated watershed management plan

Urban agriculture

Informing policies Selected impacts of project implementation

Improved local planning

- Local Government Units (LGUs) in Silang-Sta. Rosa sub-watershed used project results (e.g. flood-hazard maps, countermeasures) to update Comprehensive Land-use Plans (CLUPs).
- City of Santa Rosa developed Local Climate Change Action Plan (LCCAP) using project findings.
- ✓ With project support, LGUs prepare proposal for People's Survival Fund (national funding for climate change adaptation) for implementing countermeasures.

Supported national agenda

- Climate Change Commission (CCC) invited Project to share knowledge at Eco-town / Community for Resilience (CORE) conference.
- Laguna Lake Development Authority (LLDA) used project findings in developing master plan.
- ✓ Upon request from ADB, IGES/UPLB coorganized joint workshop with ADB on urban resilience to climate change.

VULNERABILITY ASSESSMENT Results from Community-based and key informant surveys:

Reasons For Flood Vulnerability

- Rapidly increasing population and population density
- Communities/Barangays have borders with the Laguna Lake.
- Most houses are within 200 m of the lake.
- Most houses are 15 years or older.
- Most houses have only one floor.

Results from Community-based and key informant surveys: Impacts of Flooding

- Flood depth: ≥ 1.63
- Flood duration: Mostly 3 months
- Problems encountered during flood events are lack of electricity, lack of food, lack of drinking water and water for other uses, etc.
- Damages to house/building and minimal effect on appliance and furniture and in human health and life
- Negative impacts to livelihood and income

No significant difference among values

Impacts on Livelihood and Income: Effect on Average Income

- Most households experience a decrease in income after floods.
- Percent decrease:
 - ✓ Caingin 33.3%
 - Aplaya 27.8%
 - ✓ Sinalhan 24.0%
- Sinalhan is the least affected with no significant decrease. However, it has the lowest income of all 3 barangays.

Results from Community-based and key informant surveys: Adaptive Capacity To Floods

- An EWS is in place at the barangay level
- Forms of government intervention and assistance are in-place
- The sanitation program, livelihood and financial programs, relief operations, evacuation and SRR operations are funded enough
- Health programs in place during and after floods are insufficient
- Furthermore, mitigation measures done by the city government and the barangays are lacking.
- However, the respondent's perception of the government interventions is **EFFECTIVE.**

Results from Community-based and key informant surveys: Coping Mechanisms To Flood

- The residents in all barangays place valuables in high places and prepare before floods and relocate during floods.
- Most households only have medical insurance or no insurance at all.
- The respondents mainly receive financial support from relatives, friends, and neighbors.

Results from Community-based and key informant surveys: Physical Vulnerability Analysis

Results from Community-based and key informant surveys:

Socio-economic Vulnerability Analysis

- MOST BARANGAY SINALHAN
- HIGH VULNERABILITY

MODERATE BARANGAY CAINGIN

• MODERATE VULNERABILITY

LEAST BARANGAY APLAYA

LOW VULNERABILITY

	Weight	Social Vulnerability Class								
Factors		Barangay Caingin		Barangay Aplaya		Barangay Sinalhan				
		Low (1), Moderate (2), High (3)								
		1	2	3	1	2	3	1	2	3
Income	0.11									
Livelihood	0.05									
Residency	0.05									
Size of Family	0.03									
Gender	0.03									
Age	0.02									
Education	0.02									
Ownership	0.02									

Table 14. Social Vulnerability Scores/Values for VariousSocio-economic Factors Using the Matrix

Results from Community-based and key informant surveys: Recommendations To The Local Government

Preparedness

Response

Rehabilitation and Recovery

PREVENTION AND MITIGATION

- Implement and integrate DRRM and CCA principles to laws on land-use in flood-prone areas, Building Code, the National Greening Program, and existing ordinances on DRRM.
- Conduct inventory of critical infrastructure to floods by the barangays and enhance the existing mechanisms in increasing the disaster resilience of flood-reducing infrastructure and natural water systems by the city government in coordination with the barangays such as:
- improving and cleaning sewerage systems
- Icleaning of rivers and the lake
- Building additional catch basins in spillways
- Building of dikes and levees near rivers and lake

PREVENTION AND MITIGATION

- Regular vulnerability assessments and hazards mapping every 3 years as recommended by the NDRRMP by the city government in coordination with the barangays
- Develop mechanisms for risk financing and insurance schemes at the barangay level to mitigate the financial effects of floods
- Developing and setting-up localized community-based Early Warning System (EWS) to enhance monitoring, forecasting and warning of flood hazards. This should include procurement of necessary equipment, building of needed infrastructure, and training of city and government officials who will eventually implement it.

PREPAREDNESS

- Perform a localized Information, Education and Communication (IEC) program at the barangay level and integrate DRRM and CCA principles in school curriculum
- Conduct training and simulation of city and barangay officials on disaster preparedness and response
- Enhance localized disaster preparedness and response systems by developing scenario-based and assessment-based action plans and policies
- Regular inventory of existing resources and services and develop a corrective action plan to improve the formulation of future plans and policies.

RESPONSE

- Ensure the activation of the incident command system (ICS) 12-24 hours before the onset of a possible flood hazard
- Ensure the activation of assessment teams within 12 hours and the use of Damage and Needs Assessment (DANA) tool within 24-48 hours of the onset of a flood hazard
- Ensure an integrated (inter-agency) and coordinate Search, Rescue, and Retrieval (SRR) operations
- Ensure the activation of evacuation mechanisms already inplace within a number of hours of flood onset
- Local government should set minimum standards of evacuation centers. Evacuation centers should have a child-friendly space for continued education and there should be a space for animals

RESPONSE

- There should be immediate medical consultation and assessment during and immediately after flood hazards
- There should be an immediate assessment of water quality
- There should be an existing list of identified health centers, clinics, and hospitals to address health concerns
- There should be a provision in the response plan to address the psychological well-being of flood victims

REHABILITATION AND RECOVERY

- There should be a post-disaster needs analysis to ensure that the appropriate groups receive the help they need
- Design and construct or reconstruct buildings that are disaster-resilient
- Design and implement livelihood programs and identify and mobilize funding sources for credit facilities for financial recovery
- There should be a mechanism to empower informal settlers that were displaced by floods such as construction of core shelter and cash-for-work and food-for-work programs

2018 DUBAI INTERNATIONAL AWARD FOR BEST PRACTICE

THANK YOU!

 Coastal areas around the Laguna Lake are vulnerable to increase in lake water level rise
 Continuous rain
 Lasts for 2-6 months
 Up to 3 meters high

Flood hazard map in Laguna Lake Greater Watershed