Promoting Cost-Effective Feeds Made with Locally Available Ingredients for a Sustainable Aquaculture

Roger Edward P. Mamauag

Southeast Asian Fisheries Development Center, Aquaculture Department Tigbauan, Iloilo, Philippines

National Academy of Science & Technology, Philippines March 20-21, 2019 Tacloban City, Leyte, Philippines

Sustainable aquaculture in a growing population?

inside investor

Source: Population Reference Bureau, 2012 World Population Data Sh

Contribution of Asian countries in fish production (1)

Finfish-Inland	Aquacu	lture	(Тор	10 Producers)
China	24	817	311	60.10%
India	4	148	407	10.00%
Indonesia	2	459	418	6.00%
Vietnam	2	369	903	5.70%
Bangladesh	1	647	827	4.00%
Egypt	1	091	688	2.60%
Myanmar		869	384	2.10%
Thailand		467	249	1.10%
Brazil		388	700	0.90%
Philippines		318	798	0.80%
Others	2	713	481	6.60%
WORLD	41	292	167	100%

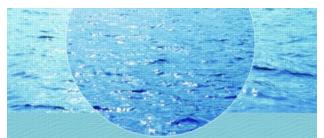
FAO, 2015

Contribution of Asian countries in fish production (2)

Finfish- Mar	ricultur	e (To	p 10	Producers)
Norway	1	245	399	21.60%
China	1	123	576	19.40%
Chile		736	310	12.70%
Indonesia		720	545	12.50%
Philippines		375	735	6.50%
Japan		242	905	4.20%
United Kingdom		156	220	2.70%
Greece		124	740	2.20%
Canada		122	024	2.10%
Turkey		110	845	1.90%
Others		820	088	14.20%
WORLD	5	778	387	100%

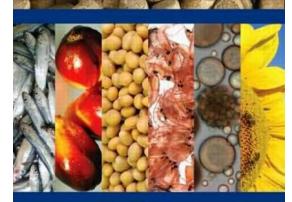
FAO, 2015

Increasing pressure from the wild for fishmeal



Extract from GLOBEFISH Databank Prices - Exports - Imports - Production

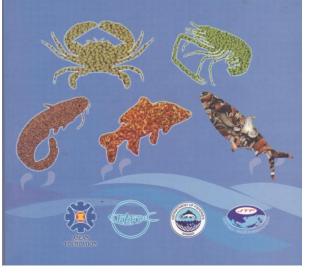
May 2013


Aggressive research on alternative nutrient sources for fish feeds.

ALTERNATIVE PROTEIN SOURCES IN AQUACULTURE DIETS

Fish Oil Replacement and Alternative Lipid Sources in Aquaculture Feeds

Edited by Giovanni M. Turchini • Wing-Keong Ng Douglas R. Tocher



on

ASEAN-SEAFDEC Regional Technical Consultation

Development and Use of Alternative Dietary Ingredients or Fish meal Substitutes in Aquaculture Feed Formulation

Mae R. Catacutan Relicardo M. Coloso Belen O. Acosta Editors

Knife fish meal - Tilapia

Table 1Proximate composition of processed meal from knife fish.Nutrient component(in% dry matter, DM)Moisture 8.51 ± 0.04 Crude lipid 3.22 ± 0.14 Crude protein 62.36 ± 0.95 Crude fiber 0.18 ± 0.02 Ash 22.85 ± 0.41

•75% KFM replacement of FM•Improved weight gain & feed intake

•Normal hepatic histopathology

Protein enhanced copra meal - Shrimp

The Israeli Journal of Aquaculture - Bamidgeh, IJA_68.2016.1244, 6 pages

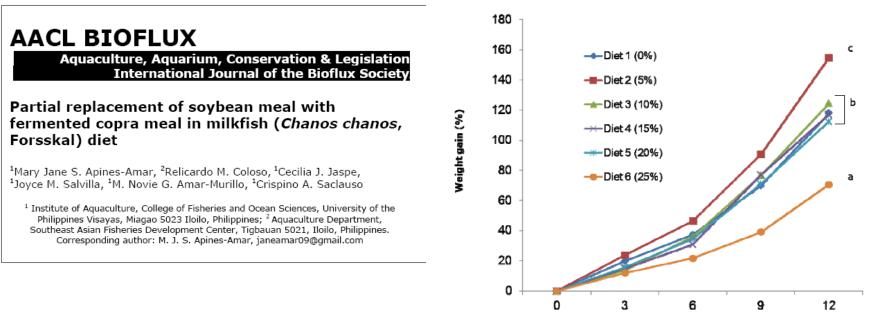
The IJA appears exclusively as a peer-reviewed on-line open-access journal at <u>http://www.siamb.org.il</u>. To read papers free of charge, please register online at <u>registration form</u>. Sale of IJA papers is strictly forbidden.

Effects of Partial Replacement of Fish Meal by Fermented Copra Meal on the Growth and Feed Efficiency in Black Tiger Shrimp, *Penaeus monodon*

Mary Jane S. Apines-Amar¹*, Karen Grace S. Andrino-Felarca¹, Rowena E. Cadiz¹, Valeriano L. Corre, Jr. ¹, Adelaida T. Calpe²

¹ Institute of Aquaculture, College of Fisheries and Ocean Sciences, University of the Philippines Visayas, Miagao, Iloilo 5023, Philippines

² Philippine Council for Agriculture, Aquatic and Natural Resources Research and Development (PCAARRD), Paseo de Valmayor, Timugan Los Baños, Laguna, Philippines


Tabl	e 1. Proximate composition	of the fermented copra meal (FCM used in the formulation ¹
	Parameters	Analyzed values(%)
	Moisture	11.48
	Crude protein	38.27
	Crude fat	6.84
	Crude fiber	6.44
	Ash	9.61
	Nitrogen free extract	38.83
	¹ Dry matter basis.	

Replace 40% of FMGrowth, FCR, survival & PER not affected.

Protein enhanced copra meal - Milkfish

Weeks

Formulation or the experimental diets (g/kg)

FCM inclusion level	0%	5%	10%	15%	20%	25%
Basal diet ^a	677.60	677.60	677.60	677.60	677.60	677.60
Soybean meal	300.00	265.00	215.00	165.00	115.00	65.00
Copra meal	15.00	0.00	0.00	0.00	0.00	0.00
Fermented copra meal ^b	0.00	50.00	100.00	150.00	200.00	250.00
L-methionine	1.20	0.80	0.55	0.24	0.09	0.00
L-threonine	1.60	1.33	1.35	1.37	1.42	1.47
L-phenylalanine	0.00	0.00	0.00	0.61	1.57	2.49
Rice bran	4.60	5.27	5.50	5.18	4.32	3.44

^a Basal diet – Fish meal 185g, cowpea 200g, corn starch 225g, cod liver oil 30g, soybean oil 30g,

vitamin mix 5g, mineral mix 1.5, Asc P (Tiger C) 0.1g.

^b Purchased from a local dealer.

Various plant protein- Seabass

J. Appl. Ichthyol. 16 (2000), 56–60 © 2000 Blackwell Wissenschafts-Verlag, Berlin ISSN 0175–8659 Received: June 20, 1998 Accepted: April 1, 1999

Nutritional evaluation of various plant protein sources in diets for Asian sea bass *Lates calcarifer*

By P. S. Eusebio and R. M. Coloso

Aquaculture Department, Southeast Asian Fisheries Development Center, Tigbauan, 5021 Iloilo, Philippines

•Replacement of soybean from 13-17% in the diet

Table 3

Growth performance of juvenile Asian sea bass *Lates calcarifer* fed diets containing protein from locally available feed ingredients for 61 days and apparent protein digestibility (APD) of the diets*

Treatment	Initial weight (g)	Final weight (g)	Weight gain (%)	Specific growth rate (%/day)†	TFC	FCR	APD‡ (%)
Control	3.8 ± 1.5	43.9 ± 5.8	1479 ^a	4.41ª	45.8 ± 7.1	1.12ª	94.0 ± 0.2^{a}
(Defatted soybean) Diet 1	3.8 ± 1.5	42.1 ± 7.0	1286 ^{ab}	4.28ª	45.4 ± 8.0	1.17ª	$91.2 \pm 0.2^{\mathrm{b}}$
(White cowpea) Diet 2	3.7 ± 1.1	41.5 ± 4.3	1216 ^{ab}	4.21 ^{ab}	45.3 ± 5.0	1.20ª	$91.1 \pm 0.6^{\text{b}}$
(Green mungbean) Diet 3	3.8 ± 0.7	36.7 ± 3.0	926 ^b	3.84 ^b	45.6 ± 3.3	1.39 ^b	$91.2 \pm 0.4^{\mathrm{b}}$
(Papaya) Diet 4	3.8 ± 0.6	36.7 ± 2.0	950 ^b	3.84 ^b	44.8 ± 2.6	1.37 ^b	89.2 ± 0.5°
(Cassava) Grand mean	3.8 ± 0.05	40.2 ± 2.0	1172 ± 115	4.12 ± 0.1	45.462.2	1.25 ± 0.03	91.3 ± 0.4

Digestibility studies - Seabass

Aquaculture Research, 2004, 35, 1261–1269

doi: 10.1111/j.1365-2109.2004.01148.x

Apparent digestibility of selected ingredients in diets for juvenile grouper, *Epinephelus coioides* (Hamilton)

Perla S Eusebio, Relicardo M Coloso & Roger E P Mamauag

Aquaculture Department, Southeast Asian Fisheries Development Center, Tigbauan, Iloilo, Philippines

Correspondence: P S Eusebio, Aquaculture Department, Southeast Asian Fisheries Development Center, Tigbauan, Iloilo 5021, Philippines. E-mail: pse@aqd.seafdec.org.ph

 $\begin{array}{l} \textbf{Table 4} & \text{Apparent digestibility coefficients (ADCs) for dry} \\ \text{matter (ADC_{dm}) and crude protein (ADC_{cp}) of feed ingredients used in the formulated diets (%)*} \end{array}$

Batch			
no.	Feed ingredients	ADC _{dm}	ADC _{cp}
1	Reference diet	$\textbf{85.4} \pm \textbf{0.14}$	97.2 ± 0.10
	Fish meal, Chilean	$83.6\pm3.09^{\text{abc}}$	98.0 ± 0.07^a
	Shrimp meal, Acetes sp.	$76.0\pm4.00^{\text{bc}}$	95.0 ± 0.72^a
	Soybean meal, defatted	$\textbf{75.7} \pm \textbf{1.98}^{\text{bc}}$	96.0 ± 0.13^{a}
	Fish meal, white	89.2 ± 1.69^{ab}	98.6 ± 0.31^{a}
	Cowpea meal, white	$74.2\pm3.14^{\rm bc}$	93.5 ± 1.22^{ab}
	Ipil-ipil leaf meal	$56.0\pm0.04^{\circ}$	$78.8 \pm 2.64^{\circ}$
2	Reference diet	84.9 ± 1.17	97.4 ± 0.81
	Squid meal	99.4 ± 0.95^{a}	$\textbf{94.2} \pm \textbf{0.21}^{a}$
	Rice bran	$68.5\pm7.02^{\rm cd}$	42.7 ± 5.38^{d}
3	Reference diet	$\textbf{85.0} \pm \textbf{1.11}$	93.4 ± 0.42
	Wheat flour	$\textbf{72.8} \pm \textbf{0.85}^{\text{bcd}}$	$\textbf{82.9} \pm \textbf{1.26}^{\texttt{bc}}$

Treatment	Final weight (g)	Weight gain (%)	SGR†(% day ⁻¹)	Feed intake (g)	FCR‡
Control (Chilean fish meal)	$49.0\pm 3.8^{\text{a}}$	1219.5 ± 34^{a}	3.2 ± 0.03^{a}	64.9 ± 6.0^a	1.4 ± 0.02^{a}
Diet 1 (white fish meal)	53.0 ± 3.2^a	1345.6 ± 55^{a}	3.3 ± 0.05^{a}	64.1 ± 7.1^{a}	1.3 ± 0.33^{a}
Diet 2 (white cowpea meal)	49.1 ± 1.9^{a}	1253.7 ± 107^{a}	3.2 ± 0.05^a	61.8 ± 5.1^{a}	1.4 ± 0.10^a
Diet 3 (ipil-ipil leaf meal)	31.4 ± 3.9 ^b	755.8 ± 62 ^b	$2.6\pm0.10^{\text{D}}$	45.3 ± 5.6^{a}	$1.6\pm0.05^{\text{b}}$

Table 5Growth performance of juvenile grouper Epinephelus coioides fed formulated diets for 80 days*

Feed pea - Milkfish

14.5%	Table 1 Composition (g/100 g d	iet) and pr	oximate ar	alvses of t	he experime	ental diets			
Available online at www.sciencedirect.com	Ingredients	D-1 (0%)	D-2 (5%)	D-3 (10%)	D-4 (15%)	D-5 (20%)	D-6 (25%)	D-7 (30%)	D-8 (CMF) ^a
ELSEVIER Aquaculture 225 (2003) 89–98	White fish meal Soybean meal	10.0 35.0	10.0 31.5	10.0 28.0	10.0 24.5	10.0 21.0	10.0 17.5	10.0 14.0	
www.elsevier.com/locate/aqua-online	Copra meal Meat and bone meal	13.0 11.0							
Detential of food non (Disum activum) mool on a	Vitamin mix Mineral mix	3.0 2.0							
Potential of feed pea (<i>Pisum sativum</i>) meal as a protein source in practical diets for milkfish	Cod liver oil Soybean oil Bread flour	2.0 2.0 21.2	2.0 2.0 17.3	2.0 2.0 13.9	2.0 2.0 10.6	2.0 2.0 7.2	2.0 2.0 3.8	2.0 2.0 0.4	
(Chanos chanos Forsskal)	Filler (Celufil) Green peas	0.8	1.7 6.5	2.0 13.1	2.3 19.6	2.6 26.2	3.0 32.7	3.3 39.3	
·	Proximate composition	· ·	-		22.42	22.20	22.22	22.25	27.20
Ilda G. Borlongan ^{a,*} , Perla S. Eusebio ^a , Tim Welsh ^b	Crude protein Crude fat	33.52 10.24	33.44 10.22	33.20 10.10	33.42 10.08	33.29 10.02	33.22 10.08	33.35 10.07	37.38 9.14
^a Aquaculture Department, Southeast Asian Fisheries Development Center, Tigbauan, Iloilo 5021, Philippines ^b USA Dry Pea and Lentil Council, 2780 W. Pullman Road, Moscow, ID, USA	Crude fiber Nitrogen-free extracts Ash	4.66 43.54 8.04	4.96 43.34 8.04	4.42 43.96 8.32	4.39 43.37 8.74	4.94 43.33 8.42	4.51 43.79 8.40	4.63 43.70 8.25	5.20 39.18 9.10

Table 4

Response of milkfish juveniles to the various test diets after 12 weeks of feeding

Diet No.	Percentage of Survival (%)	Percentage of Weight Gain (%)	SGR (%/day)	FCR	PER
1 (0%)	90 ^c	834.8 ^e	1.58 ^e	2.15 ^e	1.44 ^d
2 (5%)	90 ^c	833.1°	1.51 ^e	2.10 ^e	1.46 ^d
3 (10%)	90 ^c	835.3 ^e	$1.50^{\rm e}$	2.10 ^e	1.44 ^d
4 (15%)	80 ^b	691.0 ^d	1.32 ^d	2.25 ^d	1.37°
5 (20%)	80^{b}	680.0 ^d	1.29 ^d	2.39 ^c	1.35 ^c
6 (25%)	$70^{\rm a}$	512.6 ^b	0.89 ^b	2.50^{b}	1.21 ^b
7 (30%)	$70^{\rm a}$	464.0 ^a	$0.80^{\rm a}$	2.60^{a}	1.15 ^a
8 (CMF)	80^{b}	581.4 [°]	1.00°	2.46 ^b	1.23 ^b

Defatted Soybean Meal - Snapper

Aquaculture Research, 2004, 35, 299-306

Partial replacement of fishmeal by defatted soybean meal in formulated diets for the mangrove red snapper, *Lutjanus argentimaculatus* (Forsskal 1775)

Mae R Catacutan & Gregoria E Pagador

Aquaculture Department, Southeast Asian Fisheries Development Center, Tigbauan, Iloilo, Philippines

Correspondence: M R Catacutan, Aquaculture Department, Southeast Asian Fisheries Development Center, P.O. Box 256, Iloilo 5000, Philippines, E-mail: mrc@aqd.seafdec.org.ph

Table 1 Composition of experimental diets*

	g 100 g ⁻¹ diet Fishmeal protein replaced by defatted soybean meal (DSM) protein (%)							
Ingredients	0	12.5	25	37.5	50			
Peruvian fish meal†	64.00	56.00	48.00	40.00	32.00			
Squid meal	3.00	3.00	3.00	3.00	3.00			
DSM†	0	12.00	24.00	36.00	48.00			
Dextrin	16.00	10.5	7.30	3.50	0			
Common ingredients:	16.61	16.61	16.61	16.61	16.61			
Rice bran	0.39	1.89	1.09	0.89	0.39			
Analysed (% dry basis)								
Crude protein	50.3	51.8	52.3	51.7	51.4			
Crude fat	9.6	8.9	10.2	9.5	8.7			
Crude fibre	2.2	2.3	2.3	2.1	2.2			
NFE	23.4	23.7	22.1	24.3	26.7			
Ash	14.6	13.4	13.1	12.4	11.0			
P/E ratio (mg protein kJ ⁻¹)	25.5	25.9	25.8	25.6	25.4			

Treatments (%)	Initial avg. wt. (g) (<i>n</i> = 15)	Final avg. wt. (g) (<i>n</i> = 14–15)	SGR† (% per day) (<i>n</i> = 3)	PER‡ (n = 3)	FCR§ (<i>n</i> = 3)	HSI¶ (<i>n</i> = 18)	Haematocrit (%) (n = 9)
0	5.00 ± 0.06	90.2 ± 4.2^a	$\textbf{2.18} \pm \textbf{0.04}^{a}$	0.67 ± 0.02^{a}	$\textbf{2.8}\pm\textbf{0.1}^{a}$	$\textbf{2.88} \pm \textbf{0.66}^{a}$	46.6 ± 2.9^{abc}
12.5	4.88 ± 0.06	$90.1\pm 4.3^{\text{a}}$	$\textbf{2.19} \pm \textbf{0.04}^{a}$	0.65 ± 0.03^{ab}	3.0 ± 0.1^{a}	2.79 ± 0.38^a	$49.1\pm4.4^{\text{ab}}$
25	4.80 ± 0.06	94.6 ± 10.0^{a}	$\textbf{2.22}\pm\textbf{0.13}^{a}$	$0.64\pm0.02^{\text{b}}$	3.0 ± 0.1^{a}	2.50 ± 0.63^a	51.5 ± 3.0^a
37.5	4.90 ± 0.10	99.8 ± 1.8ª	2.26 ± 0.02^{a}	0.66 ± 0.02^{ab}	2.9 ± 0.1^{a}	2.63 ± 0.83^{a}	44.5 ± 2.4^{bc}
50	4.80 ± 0.15	85.8 ± 6.8^a	$\textbf{2.16} \pm \textbf{0.04}^{a}$	0.63 ± 0.02^{b}	$\textbf{3.1}\pm\textbf{0.1}^{a}$	$\textbf{2.11} \pm \textbf{0.51}^{a}$	40.6 ± 2.5^{c}

Table 2 Growth, feed efficiency, hepatosomatic index (HSI), and haematocrit of red snapper at different DSM levels for 19 weeks*

Water hyacinth - Shrimp

Aquaculture Research, 2015, 1-8

doi: 10.1111/are.12713

Effects of water hyacinth (*Eichhornia crassipes*) leaf protein concentrate as soybean protein replacement in white shrimp *Litopenaeus vannamei* (Boone) postlarvae diet

Nicole Niña G Chavez¹, Janice A Ragaza², Valeriano L Corre Jr¹, Augusto E Serrano Jr¹ & Rex Ferdinand M Traifalgar¹

¹Institute of Aquaculture, College of Fisheries and Ocean Sciences, University of the Philippines Visayas, Miagao, Iloilo, Philippines

²Department of Biology, School of Science and Engineering, Loyola Schools, Ateneo de Manila University, Quezon, Metro Manila, Philippines

Correspondence: R F Traifalgar, Institute of Aquaculture, College of Fisheries and Ocean Sciences, University of the Philippines Visayas, Miagao, Iloilo 5023, Philippines. E-mail: waterhyacinth.aqf13@gmail.com

 Table 2 Composition of experimental diets for Litopenaeus vannamei used to evaluate the replacement of soybean meal with WHLPC. The diets were formulated under laboratory conditions

Ingradianta	Experim	nental die	s	
Ingredients (g 100 g ⁻¹ , dry diet	0%	25%	50%	75%
Defatted soybean meal	30	22	14	8
WHLPC	0	18	35	48
Fish meal	20	20	20	20
Squid meal	14	14	14	14
Fish oil/soybean oil	5	4	3.5	3
Starch	20	14	8.98	2.48
Vitamin premix†	2	2	2	2
Mineral premix‡	0.5	0.5	0.5	0.5
Lecithin	0.5	0.5	0.5	0.5
BHT	0.02	0.02	0.02	0.02
Lignobond	1.5	1.5	1.5	1.5
Alpha-cellulose	6.48	3.48	0	0
Total	100	100	100	100
Proximate Analysis (g 10	0 g ⁻¹ , dry	diet)		
Crude protein	40.86	40.85	41.75	41.12
Crude fat	9.11	8.74	8.89	8.83
Crude fibre	2.84	2.67	2.99	3.57
Ash	10.20	10.66	11.13	12.27

WHLPC dietary protein replacement	ABW(g)	% Weight gain	Survival (%)	SGR
0%	1.91 ± 0.27^{a}	38167.27 ± 5339.34^a	81.67 ± 7.26	8.36 ± 0.20^{a}
25%	1.46 ± 0.12^{ab}	29104.73 ± 2362.87^{ab}	88.33 ± 4.41	8.10 ± 0.11^{ab}
50%	1.11 ± 0.11^{bc}	22165.56 ± 2250.99bc	88.33 ± 7.26	7.71 ± 0.14^{b}
75%	$0.68\pm0.09^{\circ}$	$13480 \pm 1706.23^{\circ}$	100 ± 0.00	$6.99\pm0.19^{\circ}$

 Table 3 Growth performance and nutrient utilization of L. vannamei, cultured in 30-L aquai

 levels of WHLPC

rium tanks, after 70 days of culture and fed four test diets with increasing replacement

FI (g/body weight)	PER	FE	Protein retention	Lipid retention
1.42 ± 0.09^{a}	1.84 ± 0.12^a	$71.17 \pm \mathbf{4.65^a}$	32.36 ± 1.85^{a}	14.15 ± 1.37^{a}
1.25 ± 0.07^{a}	2.09 ± 0.11^{a}	80.78 ± 4.18^{a}	26.23 ± 3.00^{ab}	12.66 ± 3.63^{ab}
1.49 ± 0.02^{a}	1.72 ± 0.02^{a}	67.38 ± 0.81^{a}	19.90 ± 2.95 ^b	6.96 ± 1.95 ^{bc}
1.91 ± 0.02^{b}	1.37 ± 0.01^{b}	52.40 ± 0.40^{b}	11.59 ± 1.07°	$3.87 \pm 0.82^{\circ}$

Marine annelids - Shrimp

Fish. Res. J. Philipp. Vol 10 Nos. 1-2 January-December 1985

AN EVALUATION OF THREE ANNELIDS AS FEED INGREDIENTS IN FORMULATED DIETS FOR JUVENILE PENAEUS MONODON

Felicidad Piedad-Pascual*

ABSTRACT

The nutrivive value of two species of earthworms, Eisenia foetida and Eudrilus euginae and the marine annelid, Nereis sp. in P. monodon juvenile diets was determined in two separate experiments. Percentage weight gain and survival were higher with diets containing Eisenia foetida compared to those of diets with Nereis sp. Diets containing dried worm meal were also better compared to those with frozen worms incorporated in the "wet" form. Incorporation of earthworms at 10% level in the diets improved growth and survival when compared to a control diet. When 30% of Eudrilus euginae was used to replace fish meal in the diet, weight gain and survival of animals were higher compared to those of diets with fish meal.

Table 5. Proximate composition of the worm meals on dry weight basis.

	Crude protein	Crude fat	Crude fiber	NFE	Crude Ash
Eisenia foetida	55.98	17.40	0.71	21.82	4.40
Nereis sp.	46.98	25.22	0.58	20.61	6.61
Eudrilus eugeniae.	52.40	3.66	5.94	22.41	15.59

Leaf meals - Abalone

Aquaculture Research, 2003, 34, 593-599

Terrestrial leaf meals or freshwater aquatic fern as potential feed ingredients for farmed abalone *Haliotis asinina* (Linnaeus 1758)

Inclusion level of up to 45% indicates no significant difference in growth to abalone fed seaweeds.

Ofelia S Reyes & Armando C Fermin

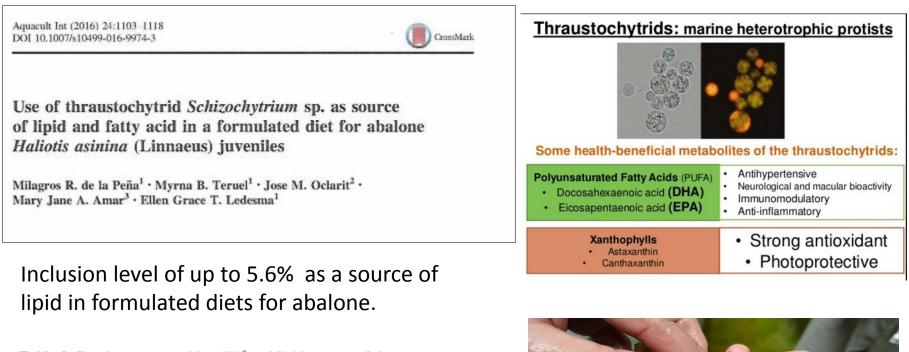

South-east Asian Fisheries Development Center, Aquaculture Department (SEAFDEC/AQD), Tigbauan 5120, Iloilo, Philippines

Table 1 Proximate analyses (% DM) of G. bailinae, azolla and terrestrial leaf meals used as feed ingredients for Haliotis asinina diet

Leaf meals	Moisture	Crude protein	Crude Fat	Crude fibre	NFE	Ash
C. papaya	5.4	23.0	11.1	11.4	38.5	15.9
L. leucocephala	7.2	25.6	6.7	12.1	47.2	8.4
M. oliefera	5.6	26.6	8.2	8.8	44.4	12.4
A. pinnata	9.8	21.5	3.2	12.0	47.1	16.1
G. bailinae	7.9	12.9	0.6	4.5	33.0	48.9

Thraustochytrid - Abalone

Proximate Composition (%)	Source of lipid		
	CLO	SBO	Schizochytrium sp.
Protein	-	-	49.55 ± 2.52
Fiber	-	-	2.85 ± 1.02
Fat	-	-	17.65 ± 0.09
Ash	-	-	10.75 ± 0.22
NFE ^b	-	-	19.20 ± 1.80
Moisture	-	-	7.46 ± 0.05
Lipid	_	-	3.89 ± 0.38

Table 3 Proximate composition (%)^a and lipid content of the source (

Blend of alternative ingredients - Shrimp

Aquaculture

Aquaculture 131 (1995) 91-100

Use of the golden apple snail, cassava, and maize as feeds for the tiger shrimp, *Penaeus monodon*, in ponds

I. Bombeo-Tuburan^{a,*}, S. Fukumoto^b, E.M. Rodriguez^a *Aquaculture Department. Southeast Asian Fisheries Development Center, Tigbauan, Iloilo, Philippines b5725 Yoshino-cho, Kagoshima City, 892 Japan

Accepted 10 October 1994

Table 3 Proximate analysis of various feeds (% dry matter basis)

	Golden snail meat	Maize	Cassava
Crude protein (%)	54.3	9.2	2.6
Crude fat (%)	1.4	0.8	0.1
Crude fiber (%)	2.0	2.4	2.7
Nitrogen-free extract (%)	20.4	86.9	92.3
Ash (%)	21.9	0.7	2.3
Calcium (%)	6.2	0.07	0.03
Phosphorus (%)	1.2	0.6	0.6

Table 2

Growth, survival, and production of *Penaeus monodon* given farm-made feeds for 4 months in ponds in Iloilo, Philippines

Feed	Carapace length (mm)	Survival (%)	Actual production (kg)	Total production (kg/ha/crop)
Maize + snails	$38.5 \pm 0.4^{\circ}$	98.9 ± 0.6^{a}	13.5 ± 7.1^{a}	270.0 ± 0.1^{a}
Cassava + snails	40.3 ± 0.5 ^a	93.8 ± 1.8^{a}	13.8 ± 0.0^{a}	276.0 ± 0.0^{a}
Maize	$36.4 \pm 0.4^{\circ}$	88.2±3.3 ^a	$\begin{array}{c} 9.3 \pm 0.2^{\circ} \\ 11.6 \pm 0.4^{b} \end{array}$	$186.0 \pm 4.2^{\circ}$
Snails	$36.7 \pm 0.4^{\circ}$	97.3±0.5 ^a		232.0 $\pm 7.1^{\circ}$

•Combination of snail + cassava / maize as the source of protein and energy, respectively.

Hydrolysates (Tuna by-product)- Sea bream

The Israeli Journal of Aquaculture - Bamidgeh, IJA_66.2014.1021, 9 pages

The *IJA* appears exclusively as a peer-reviewed on-line open-access journal at <u>http://www.siamb.org.il</u>. To read papers free of charge, please register online at <u>registration form</u>. Sale of *IJA* papers is strictly forbidden.

Hydrolyzed Tuna Meat By-Product Supplement for Juvenile Red Sea Bream, *Pagrus major*, and its Effect on Growth, Enzyme Activity, Plasma Parameters, and Apparent Nutrient Digestibility

Roger Edward Mamauag^{1*,}Janice Alano Ragaza², Shunsuke Koshio^{3,4} , Manabu Ishikawa³, Saichiro Yokoyama³

¹Southeast Asian Fisheries Development Center, Aquaculture Department, Tigbauan, Iloilo, Philippines, 5021

²Department of Biology, School of Science and Engineering, Ateneo de Manila University, Quezon City,Philippines

³The United Graduate School of Agricultural Sciences, Kagsohima University,

Improved :

- Digestibility
- Enzyme activity
- 25% inclusion level
- •Blood plasma indcators

Table 4 Performance and whole body proximate composition (%) of red sea bream juvenile¹

	Initial	Control	TMP-H 5	TMP-H 15	ТМР-Н 25	TMP 5	TMP 25
Initial body		0.82±0.0	0.81±0.1	0.82±0.01	0.82±0.02	0.81±0.0	0.81±0.0
weight (g)							
Final body		22.6±0.6ª	24.9±0.3⁵	25.3±0.4⁵	28.5±0.3°	22.7±0.4ª	22±0.3ª
weight (g)							
Survival (%)		93.3±0.0	93.3±0.0	93.3±0.0	95.6±0.0	93.3±0.0	95.6±0.0
Feed intake ²		21.7±0.3ª	22±0.6ª	22.4±0.5ª	24.5±0.3⁵	21.9±0.3ª	21.3±0.3ª
FCE ³		1.0±0.0ª	1.1±0.0 ^b	1.1±0.1 ^b	1.1±0.0 ^b	0.99±0.0ª	0.99±0.0ª
HSI⁴		1.1±0.0	1.1±0.0	1.1±0.0	1.11±0.0	1.08 ± 0.0	1.07±0.0
Protein	9.6±0.2	11.2±0.4	11.2±0.4	11.5±0.3	112.3±0.2	111.3±0.2	111.2±0.5
Fat	1.8±0.8	2.9±0.9	2.8±0.2	2.8±0.9	2.8±0.5	2.7±0.8	2.8±0.4
Ash	2.9±0.3	3.3±0.0	3.3±0.7	3.3±0.0	3.3±0.5	3.3±0.1	3.4±0.1
Moisture	80.2±0.3	81.0±0.3	80.4±0.7	80.1±0.6	80.3±0.7	80.5±0.6	80.2±0.2

Hydrolysates (Milkfish by-product)- Grouper

Aquaculture Research

Aquaculture Research, 2016, 1-10

doi: 10.1111/are.12999

Growth and feed performance, digestibility and acute stress response of juvenile grouper (*Epinephelus fuscoguttatus*) fed diets with hydrolysate from milkfish offal

Roger Edward P Mamauag¹ & Janice A Ragaza²

¹Southeast Asian Fisheries Development Center, Aquaculture Department, Iloilo, Philippines
²Department of Biology, Ateneo de Manila University, Quezon City, NCR, Philippines

Correspondence: R E P Mamauag, Southeast Asian Fisheries Development Center, Aquaculture Department, Tigbauan, Iloilo 5021, Philippines. E-mail: ermamauag@seafdec.org.ph

Ingredients Control Performance parameters Initial BW 2.86 ± Final BW 20.92 ± %Weight 632.1 ±	2.08^{a} 27.11 ± 1.18 ^b	MOH15 2.94 ± 0.2 31.23 ± 1.41^{e}	MOH25 2.85 ± 0.08	MO5 2.97 ± 0.11	MO15 2.79 ± 0.15	MO25
Initial BW 2.86 ± Final BW 20.92 ± %Weight 632.1 ±	2.08^{a} 27.11 ± 1.18 ^b			2.97 ± 0.11	279 + 015	2.04 ± 0.15
Final BW 20.92 ± %Weight 632.1 ±	2.08^{a} 27.11 ± 1.18 ^b			$\textbf{2.97} \pm \textbf{0.11}$	2.79 ± 0.15	2.04 ± 0.15
%Weight 632.1 ±		$31.23 \pm 1.41^{\circ}$			L. 10 - 0.10	2.89 ± 0.15
	and the second second		$30.91 \pm 2.11^{\circ}$	21.36 ± 1.87^{a}	20.90 ± 2.52^{a}	$\textbf{20.80} \pm \textbf{1.91}^{a}$
ente	22.4 ^{ab} 849.4 ± 32.47	^{be} 975.6 ± 18.47	$985.1 \pm 28.14^{\circ}$	621.8 ± 25.44^{a}	650.2 ± 31.47^{ab}	$606.5 \pm 21.11^{\circ}$
gain						
Survival 91.7 ±	3 97.2 ± 4	100	97.2 ± 3	97.2 ± 2	100	97.2 ± 1
FI* 17.44 ±	0.8 ^a 20.75 ± 1.1 ^b	19.89 ± 0.9^{b}	19.72 ± 1.2^{b}	17.32 ± 0.9^{a}	17.89 ± 1.0^{a}	17.78 ± 0.8^a
FCE† 1.05 ±	0.04^{a} 1.17 \pm 0.04 ^a	1.42 ± 0.02^{b}	1.43 ± 0.07^{b}	$\textbf{1.07} \pm \textbf{0.04}^{a}$	1.01 ± 0.05^{a}	1.0 ± 0.01^{a}
HSIt 1.22 ±	0.42 1.32 ± 0.31	1.51 ± 0.25	1.47 ± 0.22	1.44 ± 0.34	1.48 ± 0.32	1.31 ± 0.18
Proximate analysis						
Protein (%DM) 60.9 ±	0.51 64.3 ± 0.43	61.5 ± 0.54	64.9 ± 0.47	63.4 ± 0.38	61.5 ± 0.41	60.5 ± 0.46

Distiller's dried grains solubles - Milkfish

 Received: 16 August 2015
 Accepted: 17 May 2016

 DOI: 10.1111/anu.12470

ORIGINAL ARTICLE

Nutritional evaluation of distiller's dried grain with soluble as replacement to soybean meal in diets of milkfish, *Chanos chanos* and its effect on fish performance and intestinal morphology

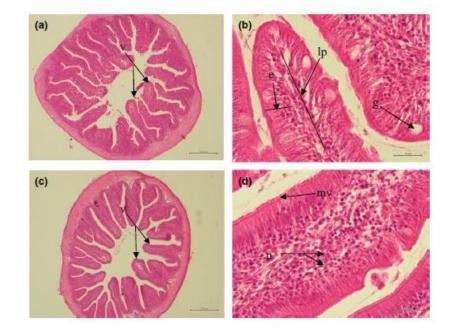
R.E.P. Mamauag¹ | J.A. Ragaza² | T.J. Nacionales¹

¹Aquaculture Department, Southeast Asian Fisheries Development Center, Tigbauan, Iloilo, Philippines

Abstract A 90-day feeding trial was conducted on milkfish, *Chanos chanos* with an initial

Proximate analysis

Crude protein (g/kg DM)	306.4
Crude fat (g/kg DM)	78.2
Ash (g/kg DM)	50.8
Crude fiber (g/kg DM)	62.5
NFE ^j (g/kg DM)	477.3
Energy (kcal per 100 g diet)	



Ingredients	Initial	Diet 1	Diet 2	Diet 3	Diet 4	Diet 5	Diet 6
Performance parameters							
Initial body weight (g)		3.08 ± 0.21	3.01 ± 0.18	3.08 ± 0.25	3.10 ± 0.18	3.11 ± 0.16	3.08 ± 0.15
Final body weight (g)		21.02 ± 1.16	18.45 ± 0.38	20.11 ± 0.86	22.13 ± 1.32	18.11 ± 1.65	19.24 ± 0.55
Per cent weight gain		582.46 ± 37.8	513.16 ± 12.7	552.94 ± 28.0	613.87 ± 42.6	482.52 ± 53.2	518.76 ± 17.8
Survival (%)		82 ± 2	81 ± 1	85 ± 2	82 ± 1	85 ± 3	83 ± 1
Feed intake ^a		24.15 ± 0.8	25.08 ± 1.1	25.11 ± 1.0	24.09 ± 1.2	24.98 ± 1.1	23.98 ± 0.9
FCE ^b		0.77 ± 0.07	0.76 ± 0.04	0.77 ± 0.04	0.75 ± 0.05	0.73 ± 0.08	0.75 ± 0.05
Proximate analysis							
Crude protein (g/kg DM)	791.4 ± 2.2	731.5 ± 6.5	684.0 ± 5.8	696 ± 4.5	694 ± 7.5	690 ± 1.2	736 ± 6.3
Crude fat (g/kg DM)	49.7 ± 4.1	157.0 ± 5.0	194.0 ± 0.5	183.0 ± 6.2	164.0 ± 3.4	153.0 ± 1.1	142.0 ± 2.9

TABLE 4 Performance parameters and whole body proximate composition (g/kg) of milkfish juvenile fed the experimental diets for 90 days

•45% inclusion level in milkfish diets to replace soybean meal
•N.S. effect on growth & feed efficiency

•Normal liver & intestine histology

Use of plant-protein sources in tilapia diets for improved production traits

A-B pineapple peels; C sugarcane bagasse; D okara meal; E-F citrus pulp and seeds

- A great volume of agricultural wastes are generated, causing a serious disposal problem
- Options to their efficient utilization with minimal additional processing (e.g., fermentation) are needed to reduce the environmental problem

Effects of mango peel silage supplementation on growth and fry production of tilapia broodstock

- Contains 39.72-42.38% crude protein
- Heavily concentrated with carotenoids which are important for reproduction

Effects of replacing fishmeal with soybean curd residues on performance of tilapia fingerlings

Soybean curd can be fed for up to 45% inclusion level replacing fish meal

Effects of dietary supplementation of citrus peel (CPE) and citrus pulp (CPU) on performance of tilapia fingerlings

Large amount of agricultural wastes and by-products (AWB) were generated from the major agricultural crop industries

Volume of wastes produced among major agricultural crops during the 2014-2015 seasons

Crops	Production	Type of Wastes	Amount
	(in tons)		(in tons)
Mango ¹	3,600-4,800	peels, kernel, seeds	1,800-2,400
Calamansi ¹	2,700-3,150	peel, pulp, seeds	1,755-2,047
Pineapple ¹	210	bran, peels	105-126
Sugarcane ^{2,3}	24,859,027	bagasse, filter cake,	9,175,010
	470,229	molasses	172,544
Papaya ¹	60	pomace, seeds	30-36
Soybean ⁴	1.5	okara	1.5

¹Data obtained from a Fruit Processing Plant in Guiguinto, Bulacan

²SRA Annual Synopsis: Philippine Sugar Factories' Production & Performance Data 2012-2013

³Data obtained from a Sugar Central in Balayan, Batangas

⁴Data obtained from cottage industries in Binangonan, Rizal

Nutritional composition of AWBs showed their potential either as protein or energy sources in tilapia diets

Agricultural wastes		% Dry matter					
and by-products	Moisture	Crude	Crude	Crude	NFE*	Ash	
		Protein	Fat	Fiber			
Sugarcane bagasse	6.27	2.83	0.46	33.90	55.39	7.43	
Pineapple peel	6.28	4.27	0.61	9.53	81.41	4.19	
Banana peel	3.19	6.44	7.41	8.02	63.33	14.81	
Citrus pulp	8.09	9.28	1.30	16.00	67.32	6.11	
Citrus peel	7.59	11.50	0.72	13.90	65.69	8.20	
Citrus seed	1.38	15.71	31.49	8.33	39.83	4.64	
Citrus, whole	2.90	11.22	2.91	10.67	69.70	5.51	
Mango peel	6.25	5.93	2.15	10.95	78.06	2.93	
Mango kernel	5.19	2.53	2.94	3.65	88.34	2.55	
Okara	4.54	25.31	12.85	12.99	45.14	3.72	

*Nitrogen Free Extract

Pesticide residue levels in mango peels and citrus peels had exceeded the limit of quantification, but they were still lower than the MRLs set by FAO Codex Alimentarius

Agricultural wastes	Pesticide residue levels (mg/kg)*					
and by-products	Organochlorines Pyrethroids		Organophosphates			
Sugarcane baggase	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>			
Pineapple peels	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>			
Mango peels	<loq< td=""><td>0.14‡</td><td><loq< td=""></loq<></td></loq<>	0.14‡	<loq< td=""></loq<>			
Banana peels	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>			
Citrus peels	0.04†	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>			

*Limit of Quantification (LOQ) is 0.01 mg/kg

+Chlorpyrifos and ‡Lamba-cyhalothrin

Maximum residue limits (MRLs) for mango (0.2 mg/kg) and citrus (1 mg/kg) (FAO Codex Alimentarius)

The limitations to use agricultural wastes and by-products as feed ingredients were associated with the high levels of lignin, saponin and phenols but these ANFs can be reduced by fermentation process

Agricultural wastes and	ANFs (%)				
by-products	Tannin	Phenols	Saponin	Lignin	Alkaloid
Banana peel	0.20	0.39	-	41.11	0.36
Citrus seeds	0.29	0.66	0.09	47.45	1.10
Citrus peel	0.20	0.71	-	31.97	0.61
Citrus pulp	0.18	0.71	-	24.94	0.15
Mango kernel	0.28	11.31	-	15.42	3.90
Mango peel	0.61	ND	3.00	29.00	16.00
Okara meal	0.11	0.60	0.25	41.49	0.11
Pineapple peel	0.11	0.53	-	21.29	0.16
Sugarcane baggase	0.20	1.93	-	41.49	0.71

Alternative Ingredients Ingredients:Species: Levels

Ingredient	Species	Inclusion (%)
Gracilaria cervicornis	Pacific white shrimp	50
Fenugreek	Tilapia	2
Peanut leaves	Tilapia	20
Jatropha oil-free kernel	Tilapia	10
Jatropha oil-free kernel	Common carp	75
Jatropha oil-free kernel	Pacific white shrimp	50
Ipil Ipil , fermented	Rohu	40
Cricket meal	African catfish	10
Rubber seed meal	Tilapia	40
Fermented golden apple snails	Red tilapia	75
Minced snail meal	Red tilapia	50
Palm kernel cake	Nile tilapia	30
	Giant Freshwater	
Golden apple snail meal	Prawn	25
Feed pea meal	Milkfish	20
Moringa oleifera	Tilapia	30
Housefly maggot meal	Barramundi	30
Poultry offal meal	Tor tambroides	100
Poultry by-product meal	Grouper	50

Green pea

Soybean meal

Cowpea

Lupin

Maggot

Poultry by-product

Cricket meal

Golden snail

Ingredient	Species	Inclusion (%)
Fermented copra meal	BlackTiger Shrimp	40
Water hyacinth	Common carp	40
Mung bean	Milkfish	20
Defatted Soybean Meal	Pangasius sp.	60
Defatted Soybean Meal	Carp	100
Cowpea meal	Milkfish	
Mung bean	Milkfish	20
Winged bean meal	African catfish	80
Moringa oleifera	Nile tilapia	30
Sunflower seed meal	Redbreast tilapia	20

Complication in amino acid profile (1)

Feedstuffs % Protein		Lim	Limiting amino acids		
		1°	2°	3°	
Maize distillers wet grains and solubles	44	Lys	Try	Arg	
Maize distillers dried grains and solubles	29.5	Lys	Try		
Brewer's yeast, dehydrated	48.6	M + C	His		
Earthworm, dehydrated	61	Hys			
Feather meal	85.7	Lys	His	Trp	
Blood meal	94.1	lle	Trp	His	
Poultry offal meal	60.2	Lys	Trp	His	
Meat and bone meal, low fat	62	Lys	M + C	Trp	
Meat and bone meal, high fat	54.9	Trp	M + C	Lys	
Fish meal, 60-68% protein as fed	70.6				
Fish meal, high protein	75.4				
Maize gluten meal	67.3	Lys	Trp	Arg	
Maize grain, Europe	9.4	Lys	Tre		
Wheat grain	12.6	Lys	Tre		

A. Oliva-Teles et al., 2015

Complication in amino acid profile (2)

Feedstuffs	% Protein	Limiting amino acids		
		1°	2°	3°
Faba bean (<i>Vicia faba</i>)	29	M + C	Trp	
Lupin (<i>Lupinus angustifolius</i>), blue seeds	33.8	M + C	Lys	Trp
Pea seeds	23.9	M + C		
Linseed meal, expeller-extracted	34.2	Lys		
Cottonseed meal, low fibre, low oil	45	Lys	M + C	Tre
Sunflower meal, solvent extracted, dehulled, partially dehulled	37.7	Lys		
Canola meal, solvent extracted	39	Lys		
Rapeseed meal, solvent extracted, low erucic, low glucosinolates	38.3	Lys		
Soybean meal, high oil (expeller)	49.3	M + C		
Soybean meal, high protein (dehulled)	53.5	M + C		

A. Oliva-Teles et al., 2015

Improvement of feeding and feed management efficiency in aquaculture production in the Philippines DA-BFAR & FAO-UN; 2014

Output 1: Baseline information on feed ingredient supply and availability, nutritional requirements, feed formulation for Nile tilapia and milkfish farms in the Philippines are collected.

Output 2. High quality and cost-effective feed formulations for different life stages (fry, fingerlings and on-grower) of Nile tilapia and milkfish and improved capacities for small- to medium scale feed manufac-tures to produce safe and appropriate semi-commercial and commercial aquafeeds are developed. **Output 3**: Good on-farm feeding practices and feed management strategies are developed/ optimized and government extension workers and farmers are trained

Output 4: Development and promotion of national feed standards for tilapia and milkfish and appropriate institutional and regulatory frameworks for aquafeed (including feed additives and quality standards) manufacturing, quality control and distribution and policy recommendations to the government for sup-porting the sector development.

Food and Agriculture Organization of the United Nations FAO FISHERIES AND AQUACULTURE TECHNICAL PAPER

Better management practices for feed production and management of Nile tilapia and milkfish in the Philippines

2.	Aqua	feed manufacturing practices and feed ingredient	
	availa	ability in the Philippines	3
	2.1	The aquafeed manufacturing sector in the Philippines	3
	2.1.1	Aquafeed production capacity	3
	2.1.2	Production technologies	3
	2.1.3	Feed formulations	3
	2.1.4	Quality control and feed standards	4
	2.1.5	Feed supply and affordability	4

3.		oving feed formulation, on-farm feeding and feed agement in the Philippines: results from the small-scale	
	and	farmer's field trials	15
	3.1	Feed formulation trials for Nile tilapia and milkfish	15
	3.2	Overview of nutritional requirements in Nile tilapia and trial formulations	15
	3.3	Overview of nutritional requirements of milkfish and trials formulations	17
	3.4	Nile tilapia laboratory trial	19

Better Management Practices (BMPs) for feed formulation, on-farm feeding and feed management for Nile tilapia and					
	milkfish aquaculture in the Philippines				
	4.1	Introduction to best management practices	37		
	4.2	Feed strategy	37		
	4.3	Aquafeed manufacturing: raw ingredients	38		
	4.4	Aquafeed manufacturing: feed formulation	40		
	4.5	Aquafeed manufacturing: feed types and feed production	40		

5.	Aqua	67	
	5.1	Common issues	67
	5.2	Feed quality, safety and cost issues	68
	5.2.1	Feed standards	68
	5.2.2	Feed costs	68

Overcoming the constraints

(1) Processing of alternative ingredients to improve nutrient quality

Aquaculture Volume 459, 1 June 2016, Pages 110-116

Aquaculture Volume 321, Issues 3-4, 1 December 2011, Pages 252-258

Short communication

Effects of dietary inclusion of fermented soybean meal on growth, body composition, antioxidant enzyme activity and disease resistance of rockfish (Sebastes schlegeli)

Sang-Min Lee^{a,} 📥 Mini Mohammadi Azarm^b, Kyung Hoon Chang^o Show more

http://dx.doi.org/10.1016/j.aguaculture.2016.03.036

Get rights and content

Original Article

Evaluation of nutritive value of fermented deoiled physic nut, *Jatropha curcas*, seed meal for Nile tilapia Oreochromis niloticus fingerlings

M.S. Hassaan M, A.M.A.-S. Goda, V. Kumar

First published: 5 April 2016 Full publication history DOI: 10.1111/anu.12424 View/save citation Cited by: 0 articles 🛛 🙀 Citation tools -

Early View	
uncellure in:	\rangle

Browse Early View Articles Online Version of Record published before inclusion in an issue

Soy peptide inclusion levels influence the growth performance, proteolytic enzyme activities, blood biochemical parameters and

R.E.P. Mamauag^a, S. Koshio^{a, b,} 📥 🗳, M. Ishikawa^b, S. Yokoyama^b, J. Gao^a, B.T. Nguyen^a, J.A. Ragaza^a

body composition of Japanese flounder, Paralichthys olivaceus

Chow more

Animal Feed Science and Technology

Volume 220, October 2016, Pages 168-179

The effects of fish hydrolysate and soy protein isolate on the growth performance, body composition and digestibility of juvenile pike silverside, Chirostoma estor

G.H. Ospina-Salazar^{a,} M.G. Ríos-Durán^{b,} 📥 M. E.M. Toledo-Cuevas^{b,} M. C.A. Martínez-Palacios^{b,}

Chow more

(2) Recovery and utilization of fisheries processing waste should be encouraged and increased.

The Israeli Journal of Aquaculture - Bamidgeh, IJA_66.2014.1021, 9 pages

The *IJA* appears exclusively as a peer-reviewed on-line open-access journal at <u>http://www.siamb.org.il</u>. To read papers free of charge, please register online at <u>registration form</u>. Sale of *IJA* papers is strictly forbidden.

Hydrolyzed Tuna Meat By-Product Supplement for Juvenile Red Sea Bream, *Pagrus major*, and its Effect on Growth, Enzyme Activity, Plasma Parameters, and Apparent Nutrient Digestibility

Roger Edward Mamauag^{1*,}Janice Alano Ragaza², Shunsuke Koshio^{3,4}, Manabu Ishikawa³, Saichiro Yokoyama³

¹Southeast Asian Fisheries Development Center, Aquaculture Department, Tigbauan, Iloilo, Philippines, 5021

²Department of Biology, School of Science and Engineering, Ateneo de Manila University, Quezon City,Philippines

³The United Graduate School of Agricultural Sciences, Kagsohima University,

Aquaculture Research, 2016, 1-10

doi: 10.1111/are.12999

Growth and feed performance, digestibility and acute stress response of juvenile grouper (*Epinephelus fuscoguttatus*) fed diets with hydrolysate from milkfish offal

Roger Edward P Mamauag¹ & Janice A Ragaza²

¹Southeast Asian Fisheries Development Center, Aquaculture Department, Iloilo, Philippines ²Department of Biology, Ateneo de Manila University, Quezon City, NCR, Philippines

Correspondence: R E P Mamauag, Southeast Asian Fisheries Development Center, Aquaculture Department, Tigbauan, Iloilo 5021, Philippines. E-mail: ermamauag@seafdec.org.ph

(3) Scientific information on nutritional requirements of farmed fish species, and feed ingredients and the interaction between fish and diet.

Fisheries Science January 2011, Volume 77, Issue 1, pp 119–128

Growth, nutrient utilization, oxidative condition, and element composition of juvenile red sea bream *Pagrus major* fed with fermented soybean meal and scallop byproduct blend as fishmeal replacement

DOI: 10.1111/anu.12470

ORIGINAL ARTICLE

WILEY Aquaculture Nutrition

Nutritional evaluation of distiller's dried grain with soluble as replacement to soybean meal in diets of milkfish, *Chanos chanos* and its effect on fish performance and intestinal morphology

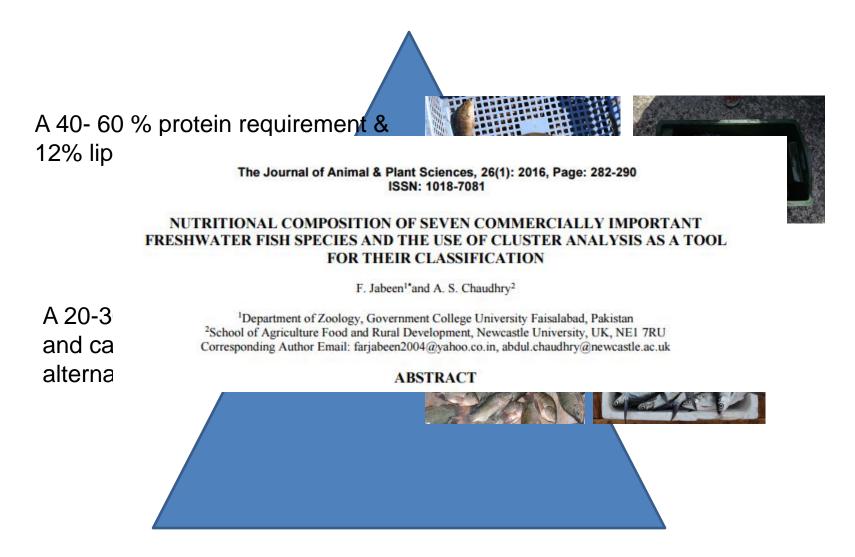
R.E.P. Mamauag¹ | J.A. Ragaza² | T.J. Nacionales¹

¹Aquaculture Department, Southeast Asian Fisheries Development Center, Tigbauan, Iloilo, Philippines

Abstract A 90-day feeding trial was conducted on milkfish, *Chanos chanos* with an initial

Aquaculture Volume 471, 20 March 2017, Pages 213–222

Redefining the requirement for total sulfur amino acids in the diet of barramundi (*Lates calcarifer*) including assessment of the cystine replacement value



(4) Promoting herbivorous species for aquaculture

- •Reduce use of fish meal & fish oil
- •Efficient conversion of nutrient inputs
- •Environmentally sensible
- •Sustainable

