

Impact of Irrigation Facilities to Agricultural Production

- providing adequate water throughout the growing season, thus contributing to higher yields by eliminating water deficits and providing a measure of drought protection;
- supplementing rainfall in unfavourable areas to ensure high yields and quality, which generally leads to higher farmgate prices;
- enabling farmers to adapt timing of production to take into account market demand, higher prices, and avoid adverse weather extremes;
- reducing risk and raising returns in the use of complementary inputs such as improved seed and fertilizer.

Strategic Interventions in Irrigation Development

- Irrigation Systems Physical Development
- Extension, Capacity Enhancement and Information Campaign
- Strengthening of Public-Private Partnership
- Farmers' Support Services
- Institutional Development and Capability Building
- Research and Development

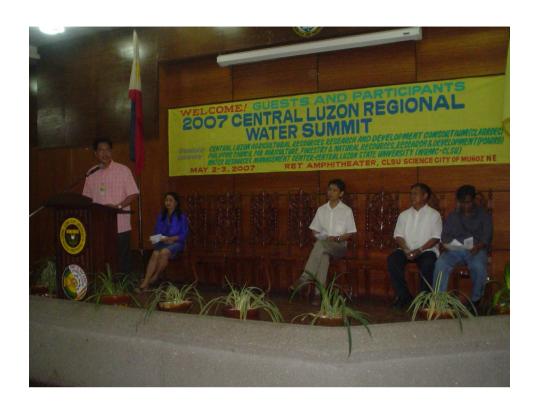
Research and Development in Irrigation

- R&D efforts should focus on cost-effective, appropriate and efficient irrigation and water management technology.
- The conduct of R&D activities should explore technologies that will lead to sustainable production like farm diversification and water saving technologies
- R&D efforts must also focus on environmental degradation, climate change, food insecurity and poverty.

Central Luzon State University Water Resources Management Center

The Water Resources Management Center (WRMC) was created through the CLSU Board Resolution No. 62-95 on August 18, 1995

R & D THRUSTS


The Center gives priority considerations to the following areas:

- Water Sourcing and Conservation
- · On-farm Water management
- Irrigation Systems' Management
- Application of Modern Irrigation & Drainage Technologies
- Water Quality Improvement
- · Watershed and Environmental Management
- Agrometeorology

WRMC Research Activities on Irrigation

Aerobic Rice Production System

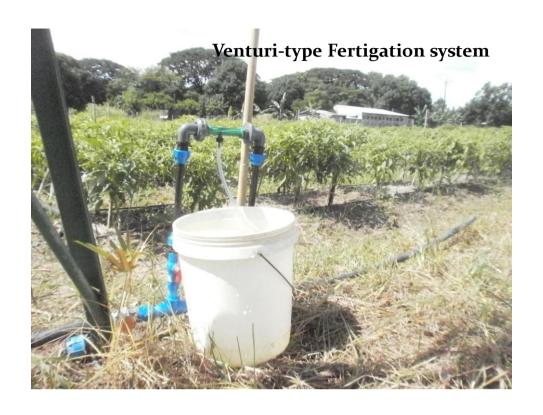
Partner Agencies: IRRI, Philrice and BASC

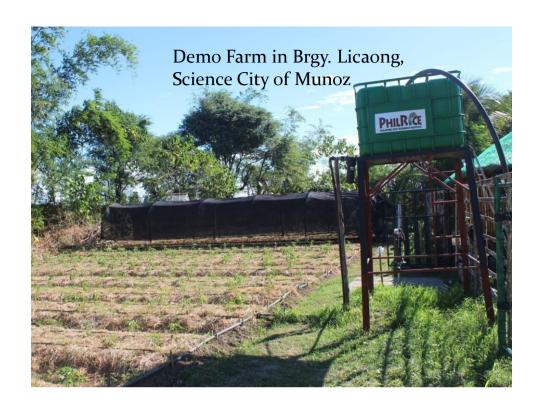
Alternate Wetting and Drying Technology

Partner Agencies: IRRI, Philrice and DA RFO III

Application of gravity-type drip irrigation system for rice-based farms

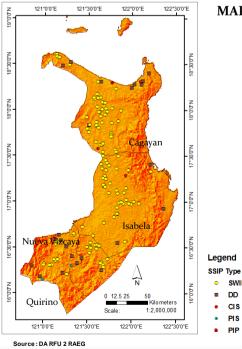
Partner Agency: Philippine Rice Research Institute





GIS-based Inventory System for SFRs


Average farm area: No. of SFR per farmer: Location:


Max surface area: Minimum Surface area: Average Surface area: Avg SFR:Farm area ratio

Depth of reservoir: WS Service area: DS Service area:

1.06 ha 1 unit/farmer (7 mostly on the upper portion of farm 4,009 sq m 186 sq m 782 sq m 0.108 or 10.8% of farm area 3.3 m 0.75 ha

0.47 ha

MAP OF EXISTING SSIP IN REGION 2 1975 -2011

SSIP	Units	Number of Beneficiaries	Service Area, has
SWIP	132	4,605	6,735
DD	33	1,338	1,565
CIS	4	251	285
STW	4578	4578	13734
PIP	1	126	100

SSIP Types	Cagayan	Isabela	Quirino	Nueva Vizcaya	
SWIP	53	48	16	15	
DD	15	3	2	13	
STW	1913	1941	289	426	
CIS	2	1	1	О	
PIP	1	О	О	0	
SWIP - Small Water Impounding Project DD - Diversional Indianation System CIS - Communication System					

SWIP DD

CIS PIS

CIS - Communal Irrigation System
PIS - Pump Irrigation System
PIP - Pressurized Irrigation System

SFR Water Balance Studies

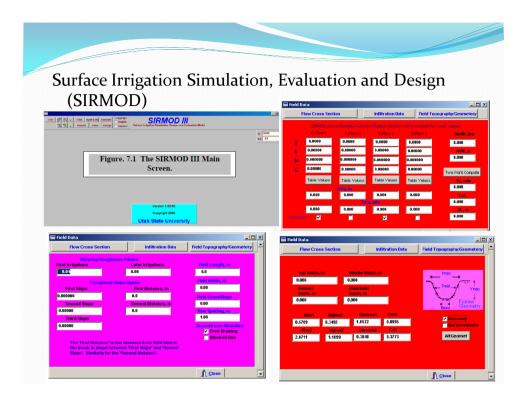
Initial Storage	786.87
Rainfall	1350.27
Runoff	6.57
Final Storage	510.11
Seepage and Percolation	768.25
Evaporation	118.01
Irrigation	7.65
Overflows	739.69
Total Inflow, P+R	1356.84
Initial storage + Total Inflow	2143.71
Outflows = Initial storage + Total Inflows - Final Storage	1633.6
S&P%	47.03%
Evaporation %	7.22%

Minimizing Storage Losses Using Organic Lining Materials

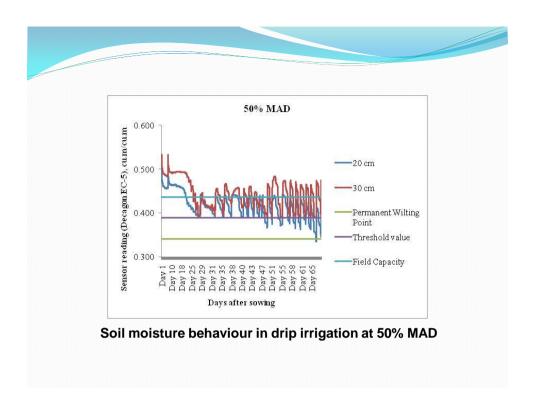
- Four ponds with a dimension of 20 m x 10 m were used in the study.
- Two of the ponds were overlain with 15-cm thick carabao manure.
- The remaining two ponds were used as controls.
- Control ponds decreased their water levels at an average rate of 4.07 cm per day
- Ponds with carabao manure lining has lower average rate of 2.79 cm per day.

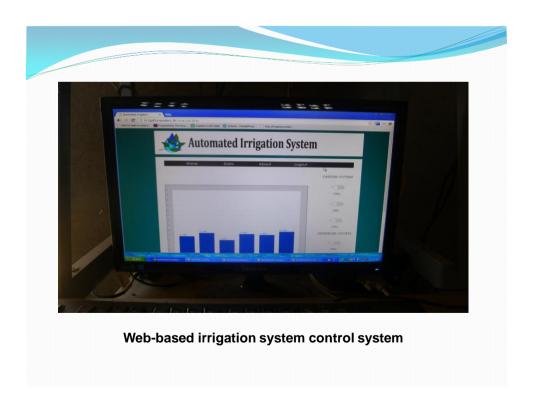
Minimizing Field Water Losses in Surface Irrigation System

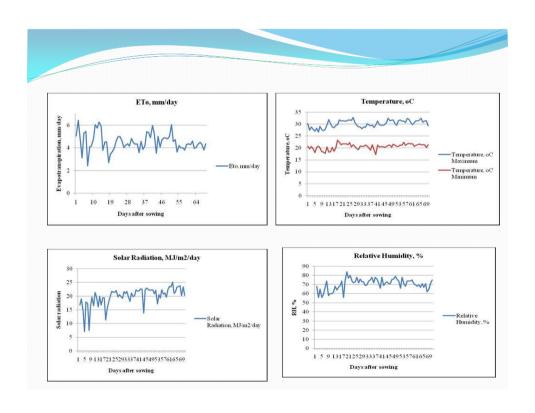
Partner Agencies: DOST-PCAARRD, PNRI and BSWM



Real Time Soil Moisture Monitoring for Corn Irrigation Scheduling Partner Agency: CHED







Controlled Environment Production Systems

Partner Agency: CHED

Farmers' Initiatives and Indigenous Knowledge

